List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232878/publications.pdf Version: 2024-02-01

FRANCESCO

#	Article	IF	CITATIONS
1	Electromagneto-mechanical model of high temperature superconductor insert magnets in ultra high magnetic fields. Superconductor Science and Technology, 2022, 35, 054002.	1.8	10
2	A 3-D Finite-Element Method Approach for Analyzing Different Short Circuit Types in a Saturated Iron Core Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-13.	1.1	11
3	The T-A formulation: an efficient approach to model the macroscopic electromagnetic behaviour of HTS coated conductor applications. Superconductor Science and Technology, 2022, 35, 043003.	1.8	53
4	2-D Modeling of HTS Coils With \$T\$-\$A\$ Formulation: How to Handle Different Coupling Scenarios. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.	1.1	8
5	Electromagnetic Modeling of Superconductors With Commercial Software: Possibilities With Two Vector Potential-Based Formulations. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-9.	1.1	17
6	Study of contact resistivity of a no-insulation superconducting coil. Superconductor Science and Technology, 2021, 34, 035009.	1.8	24
7	Numerical Modeling of AC Loss in HTS Coated Conductors and Roebel Cable Using T-A Formulation and Comparison With H Formulation. IEEE Access, 2021, 9, 49649-49659.	2.6	33
8	Advanced electromagnetic modeling of large-scale high-temperature superconductor systems based on H and T-A formulations. Superconductor Science and Technology, 2021, 34, 044002.	1.8	49
9	Analysis of AC Loss Contributions From Different Layers of HTS Tapes Using the <i>Aâ^'V</i> Formulation Model. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-11.	1.1	16
10	Implementation of the H-\$phi\$ Formulation in COMSOL Multiphysics for Simulating the Magnetization of Bulk Superconductors and Comparison With the H-Formulation. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-11.	1.1	30
11	A coupling method of the superconducting devices modeled by finite element method with the lumped parameters electrical circuit. Superconductor Science and Technology, 2021, 34, 045014.	1.8	10
12	Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines. Energies, 2021, 14, 2234.	1.6	34
13	Investigation of AC loss of superconducting field coils in a double-stator superconducting flux modulation generator by using T-A formulation based finite element method. Superconductor Science and Technology, 2021, 34, 055009.	1.8	12
14	Superconductors for power applications: an executable and web application to learn about resistive fault current limiters. European Journal of Physics, 2021, 42, 045802.	0.3	4
15	Efficient Modeling of High-Temperature Superconductors Surrounded by Magnetic Components Using a Reduced H–\$phi\$ Formulation. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-9.	1.1	14
16	AC loss calculation in high-temperature superconductor wires and windings with analytical and numerical models: influence of J c(B) dependence. Journal of Physics: Conference Series, 2021, 1975, 012038.	0.3	0
17	Screening current rotation effects: SCIF and strain in REBCO magnets. Superconductor Science and Technology, 2021, 34, 095004.	1.8	39
18	Optimization Method for Extracting Stabilizer Geometry and Properties of REBCO Tapes. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	1

#	Article	IF	CITATIONS
19	A wide range E â^' J constitutive law for simulating REBCO tapes above their critical current. Superconductor Science and Technology, 2021, 34, 115014.	1.8	3
20	Influence of Coil Position on AC Losses of Stator Superconducting Windings of a Synchronous Machine for a 10 MW Wind Turbine. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-9.	1,1	12
21	Calculating the full-range dynamic loss of HTS wires in an instant. Superconductor Science and Technology, 2021, 34, 020501.	1.8	5
22	AURORA: a public applications server to introduce students to superconductivity. Journal of Physics: Conference Series, 2021, 2043, 012005.	0.3	0
23	Superconducting imprint of magnetic textures in ferromagnets with perpendicular magnetic anisotropy. Scientific Reports, 2021, 11, 20788.	1.6	5
24	An Electromagnetic Design of a Fully Superconducting Generator for Wind Application. Energies, 2021, 14, 7811.	1.6	7
25	Resistivity of REBCO tapes in overcritical current regime: impact on superconducting fault current limiter modeling. Superconductor Science and Technology, 2020, 33, 114008.	1.8	16
26	Screening Current-Induced Field and Field Drift Study in HTS coils using T-A homogenous model. Journal of Physics: Conference Series, 2020, 1559, 012128.	0.3	14
27	Superconducting motors for aircraft propulsion: the Advanced Superconducting Motor Experimental Demonstrator project. Journal of Physics: Conference Series, 2020, 1590, 012051.	0.3	46
28	T-A Formulation for the Design and AC Loss Calculation of a Superconducting Generator for a 10 MW Wind Turbine. IEEE Access, 2020, 8, 208767-208778.	2.6	29
29	A numerical model to introduce students to AC loss calculation in superconductors. European Journal of Physics, 2020, 41, 045203.	0.3	6
30	Non-twisted stacks of coated conductors for magnets: Analysis of inductance and AC losses. Cryogenics, 2020, 110, 103118.	0.9	42
31	Anisotropic monoblock model for computing AC loss in partially coupled Roebel cables. Superconductor Science and Technology, 2020, 33, 094013.	1.8	7
32	Computing Strains Due to Screening Currents in REBCO Magnets. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	24
33	Review of the AC loss computation for HTS using <i>H</i> formulation. Superconductor Science and Technology, 2020, 33, 033002.	1.8	177
34	Fluorescent thermal imaging of a quench in insulated and non-insulated REBCO-wound pancake coils following a heater pulse at 77 K. Superconductor Science and Technology, 2020, 33, 035006.	1.8	5
35	<i>T–A</i> -Formulation to Model Electrical Machines With HTS Coated Conductor Coils. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-7.	1.1	56
36	Screening Currents and Hysteresis Losses in the REBCO Insert of the 32 T All-Superconducting Magnet Using <i>T-A</i> Homogenous Model. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	31

#	Article	IF	CITATIONS
37	A new benchmark problem for electromagnetic modelling of superconductors: the high-T _c superconducting dynamo. Superconductor Science and Technology, 2020, 33, 105009.	1.8	54
38	Overview of <i>H</i> -Formulation: A Versatile Tool for Modeling Electromagnetics in High-Temperature Superconductor Applications. IEEE Access, 2020, 8, 100403-100414.	2.6	151
39	Comparison of Constitutive Laws for Modeling High-Temperature Superconductors. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-10.	1.1	32
40	Simple and Fast Method for Computing Induced Currents in Superconductors Using Freely Available Solvers for Ordinary Differential Equations. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-8.	1.1	17
41	Fluorescent thermal imaging of a non-insulated pancake coil wound from high temperature superconductor tape. Superconductor Science and Technology, 2019, 32, 105006.	1.8	10
42	Overcritical Current Resistivity of YBCO-Coated Conductors Through Combination of PCM and Finite-Element Analysis. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	11
43	AC Loss Modeling in Superconducting Coils and Motors With Parallel Tapes as Conductor. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	34
44	Real-time simulation of large-scale HTS systems: multi-scale and homogeneous models using the <i>T–A</i> formulation. Superconductor Science and Technology, 2019, 32, 065003.	1.8	138
45	3D modelling of macroscopic force-free effects in superconducting thin films and rectangular prisms. Superconductor Science and Technology, 2019, 32, 054001.	1.8	10
46	Cross-field demagnetization of stacks of tapes: 3D modelling and measurements. Superconductor Science and Technology, 2019, , .	1.8	11
47	Study of the magnetization loss of CORC ^{\hat{A}^{\otimes}} cables using a 3D T-A formulation. Superconductor Science and Technology, 2019, 32, 025003.	1.8	113
48	Investigation of AC Loss in HTS Cross-Conductor Cables for Electrical Power Transmission. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	34
49	Length Uniformity of the Angular Dependences of <italic>l_c </italic> and <italic>n</italic> of Commercial REBCO Tapes with Artificial Pinning at 77 K. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-9.	1.1	12
50	Comparison of 2D simulation models to estimate the critical current of a coated superconducting coil. Superconductor Science and Technology, 2019, 32, 014001.	1.8	37
51	Estimation of Losses in the (RE)BCO Two-Coil Insert of the NHMFL 32 T All-Superconducting Magnet. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	36
52	High-speed fluorescent thermal imaging of quench propagation in high temperature superconductor tapes. Superconductor Science and Technology, 2018, 31, 034003.	1.8	10
53	Application of an Amorphous Core to an Ultra-High-Speed Sleeve-Free Interior Permanent-Magnet Rotor. IEEE Transactions on Industrial Electronics, 2018, 65, 8498-8509.	5.2	43
54	A Finite-Element Method Framework for Modeling Rotating Machines With Superconducting Windings. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-11.	1.1	70

#	Article	IF	CITATIONS
55	AC Loss Analysis on HTS CrossConductor (CroCo) Cables for Power Transmission. , 2018, , .		3
56	Dynamic modeling of levitation of a superconducting bulk by coupled <i>H</i> -magnetic field and arbitrary Lagrangian–Eulerian formulations. Superconductor Science and Technology, 2018, 31, 125003.	1.8	47
57	Iterative multi-scale method for estimation of hysteresis losses and current density in large-scale HTS systems. Superconductor Science and Technology, 2018, 31, 095002.	1.8	12
58	3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks. IEEE Transactions on Applied Superconductivity, 2018, , 1-1.	1.1	6
59	Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields. Superconductor Science and Technology, 2018, 31, 075005.	1.8	87
60	Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique. Superconductor Science and Technology, 2017, 30, 014010.	1.8	23
61	A parameter-free method to extract the superconductor's <i>J</i> _c (<i>B</i> , <i>Ĵ,</i>) field-dependence from in-field current–voltage characteristics of high temperature superconductor tapes. Superconductor Science and Technology, 2017, 30, 034001.	1.8	37
62	Effect of Tape's <inline-formula> <tex-math notation="LaTeX">\$I_{m c}\$</tex-math> </inline-formula> Inhomogeneity and Strand Misalignment on the Transport Capacity of Roebel Cables. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	10
63	Investigation of AC losses in horizontally parallel HTS tapes. Superconductor Science and Technology, 2017, 30, 075006.	1.8	52
64	Cable Conductor Design for the High-Power MgB2 DC Superconducting Cable Project of BEST PATHS. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	17
65	Influence of the Striation Process and the Thickness of the Cu-Stabilization on the AC Magnetization Loss of Striated REBCO Tape. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-9.	1.1	14
66	Numerical Simulation of the Performance of High-Temperature Superconducting Coils. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1987-1992.	0.8	9
67	Designing HTS Roebel cables for low-field applications with open-source code. Physica C: Superconductivity and Its Applications, 2016, 530, 120-122.	0.6	3
68	Modeling AC ripple currents in HTS coated conductors by integral equations. Cryogenics, 2016, 80, 400-404.	0.9	4
69	Interfilament Resistance at 77 K in Striated HTS Coated Conductors. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.1	6
70	Modeling of screening currents in coated conductor magnets containing up to 40000 turns. Superconductor Science and Technology, 2016, 29, 085004.	1.8	37
71	How filaments can reduce AC losses in HTS coated conductors: a review. Superconductor Science and Technology, 2016, 29, 083002.	1.8	73
72	Numerical models for ac loss calculation in large-scale applications of HTS coated conductors. Superconductor Science and Technology, 2016, 29, 024007.	1.8	93

#	Article	IF	CITATIONS
73	Influence of Parameters on the Simulation of HTS Bulks Magnetized by Pulsed Field Magnetization. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	19
74	Design and Comparison of a 1-MW/5-s HTS SMES With Toroidal and Solenoidal Geometry. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.1	27
75	Simulation of Stacks of High-Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization Using Controlled Magnetic Density Distribution Coils. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	31
76	Open-Source Codes for Computing the Critical Current of Superconducting Devices. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.1	18
77	The BEST PATHS Project on MgB ₂ Superconducting Cables for Very High Power Transmission. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.1	44
78	Three-Dimensional Modeling and Measurement of Coupling AC Loss in Soldered Tapes and Striated Coated Conductors. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.1	21
79	HTS Roebel Cables: Self-Field Critical Current and AC Losses Under Simultaneous Application of Transport Current and Magnetic Field. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	28
80	Estimation of hysteretic losses for MgB ₂ tapes under the operating conditions of a generator. Superconductor Science and Technology, 2016, 29, 034008.	1.8	15
81	Determination of Curves of HTS Tapes From the Frequency-Dependent AC Transport Loss. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	1
82	Numerical modeling of HTS applications. IEEE Transactions on Applied Superconductivity, 2016, , 1-1.	1.1	38
83	Numerical modeling of twisted stacked tape cables for magnet applications. Physica C: Superconductivity and Its Applications, 2015, 518, 122-125.	0.6	24
84	DC and AC Characterization of Pancake Coils Made From Roebel-Assembled Coated Conductor Cable. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	6
85	Potential and limits of numerical modelling for supporting the development of HTS devices. Superconductor Science and Technology, 2015, 28, 043002.	1.8	65
86	A self-consistent model for estimating the critical current of superconducting devices. Superconductor Science and Technology, 2015, 28, 085004.	1.8	69
87	AC Magnetization Loss and Transverse Resistivity of Striated YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	20
88	Three-Dimensional Numerical Simulations of Twisted Stacked Tape Cables. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	16
89	New Experimental Method for Investigating AC Losses in Concentric HTS Power Cables. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	9
90	Modelling ac ripple currents in HTS coated conductors. Superconductor Science and Technology, 2015, 28, 104002.	1.8	13

#	Article	IF	CITATIONS
91	Thin-film superconducting rings in the critical state: the mixed boundary value approach. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 1-29.	0.7	8
92	AC Loss and Coupling Currents in YBCO Coated Conductors With Varying Number of Filaments. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-8.	1.1	25
93	Modeling and simulation of termination resistances in superconducting cables. Superconductor Science and Technology, 2014, 27, 124013.	1.8	27
94	3D modeling and simulation of 2G HTS stacks and coils. Superconductor Science and Technology, 2014, 27, 044025.	1.8	88
95	Numerical modeling of MgB2 conductors for high power AC transmission. Physica C: Superconductivity and Its Applications, 2014, 504, 167-171.	0.6	12
96	Self-Consistent Modeling of the <formula formulatype="inline"><tex Notation="TeX">\$I_{c}\$</tex </formula> of HTS Devices: How Accurate do Models Really Need to Be?. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-8.	1.1	111
97	Critical state solution of a cable made of curved thin superconducting tapes. Superconductor Science and Technology, 2014, 27, 125010.	1.8	2
98	Modeling of AC Loss in Coils Made of Thin Tapes Under DC Bias Current. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	12
99	Self-Field Effects and AC Losses in Pancake Coils Assembled From Coated Conductor Roebel Cables. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.1	45
100	Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future. Superconductor Science and Technology, 2014, 27, 093001.	1.8	228
101	Computation of Losses in HTS Under the Action of Varying Magnetic Fields and Currents. IEEE Transactions on Applied Superconductivity, 2014, 24, 78-110.	1.1	264
102	Fault Current Limiter: An Enabler for Increasing Safety and Power Quality of Distribution Networks. IEEE Transactions on Applied Superconductivity, 2013, 23, 57-64.	1.1	32
103	Conduction Cooling and Fast Recovery in \$ hbox{MgB}_{2}\$-Based DC Resistive SFCL. IEEE Transactions on Applied Superconductivity, 2013, 23, 5604409-5604409.	1.1	7
104	AC Losses of Pancake Coils Made of Roebel Cable. IEEE Transactions on Applied Superconductivity, 2013, 23, 5900205-5900205.	1.1	23
105	AC Loss in Pancake Coil Made From 12 mm Wide REBCO Tape. IEEE Transactions on Applied Superconductivity, 2013, 23, 5900406-5900406.	1.1	39
106	Current-Penetration Patterns in Twisted Superconductors in Self-Field. IEEE Transactions on Applied Superconductivity, 2013, 23, 8200105-8200105.	1.1	14
107	Computation of self-field hysteresis losses in conductors with helicoidal structure using a 2D finite element method. Superconductor Science and Technology, 2013, 26, 045011.	1.8	14
108	Low AC loss cable produced from transposed striated CC tapes. Superconductor Science and Technology, 2013, 26, 075020.	1.8	60

#	Article	IF	CITATIONS
109	A full 3D time-dependent electromagnetic model for Roebel cables. Superconductor Science and Technology, 2013, 26, 052001.	1.8	76
110	Investigation of a Rutherford cable using coated conductor Roebel cables as strands. Superconductor Science and Technology, 2013, 26, 085019.	1.8	44
111	Manifolds in electromagnetism and superconductor modelling: Using their properties to model critical current of twisted conductors in self-field with 2-D model. Cryogenics, 2013, 53, 135-141.	0.9	11
112	Influence of the voltage taps position on the self-field DC and AC transport characterization of HTS superconducting tapes. Cryogenics, 2013, 57, 189-194.	0.9	6
113	Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation. Cryogenics, 2013, 53, 142-147.	0.9	85
114	Power Loss in ReBCO Racetrack Coils Under AC Applied Magnetic Field and DC Current. IEEE Transactions on Applied Superconductivity, 2013, 23, 4701305-4701305.	1.1	17
115	Critical state solution and alternating current loss computation of polygonally arranged thin superconducting tapes. Applied Physics Letters, 2013, 103, 092602.	1.5	2
116	Superconductor/ferromagnet heterostructures exhibit potential for significant reduction of hysteretic losses. Applied Physics Letters, 2013, 102, .	1.5	14
117	AC loss in ReBCO pancake coils and stacks of them: modelling and measurement. Superconductor Science and Technology, 2012, 25, 035003.	1.8	54
118	Integral Equations for Computing AC Losses of Radially and Polygonally Arranged HTS Thin Tapes. IEEE Transactions on Applied Superconductivity, 2012, 22, 8401006-8401006.	1.1	11
119	Applicability of the Adaptive Resistivity Method to Describe the Critical State of Complex Superconducting Systems. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2343-2350.	0.8	8
120	Magnetic Field in the Winding of an YBCO Pancake Coil: Experiments and Calculations. IEEE Transactions on Applied Superconductivity, 2012, 22, 6600204-6600204.	1.1	9
121	Numerical simulations of the angular dependence of magnetization AC losses: coated conductors, Roebel cables and double pancake coils. Superconductor Science and Technology, 2012, 25, 014008.	1.8	44
122	ENSYSTROB – Design, manufacturing and test of a 3-phase resistive fault current limiter based on coated conductors for medium voltage application. Physica C: Superconductivity and Its Applications, 2012, 482, 98-104.	0.6	49
123	The critical state in thin superconductors as a mixed boundary value problem: analysis and solution by means of the Erdélyi–Kober operators. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 557-597.	0.7	1
124	On the role of a tape's aspect ratio in the hysteresis losses of round superconducting cables. Superconductor Science and Technology, 2011, 24, 085016.	1.8	6
125	Low-magnetic-field dependence and anisotropy of the critical current density in coated conductors. Superconductor Science and Technology, 2011, 24, 065007.	1.8	71
126	Coated Conductor Rutherford Cables (CCRC) for High-Current Applications: Concept and Properties. IEEE Transactions on Applied Superconductivity, 2011, 21, 3021-3024.	1.1	44

#	Article	IF	CITATIONS
127	ENSYSTROB—Resistive Fault Current Limiter Based on Coated Conductors for Medium Voltage Application. IEEE Transactions on Applied Superconductivity, 2011, 21, 1209-1212.	1.1	49
128	Numerical Analysis and Experimental Measurements of Magnetic Bearings Based on \${m MgB}_{2}\$ Hollow Cylinders. IEEE Transactions on Applied Superconductivity, 2011, 21, 1460-1463.	1.1	29
129	Compliance of numerical formulations for describing superconductor/ferromagnet heterostructures. Physica C: Superconductivity and Its Applications, 2011, 471, 1083-1085.	0.6	6
130	Effect of self-field on the current distribution in Roebel-assembled coated conductor cables. Superconductor Science and Technology, 2011, 24, 095002.	1.8	10
131	Investigation of the effect of striated strands on the AC losses of 2G Roebel cables. Superconductor Science and Technology, 2011, 24, 045001.	1.8	40
132	FEM-calculations on the frequency dependence of hysteretic losses in coated conductors. Journal of Physics: Conference Series, 2010, 234, 022030.	0.3	19
133	Edge and top/bottom losses in non-inductive coated conductor coils with small separation between tapes. Superconductor Science and Technology, 2010, 23, 034017.	1.8	15
134	Simulation of ac loss in Roebel coated conductor cables. Superconductor Science and Technology, 2010, 23, 115018.	1.8	38
135	Transport and magnetization ac losses of ROEBEL assembled coated conductor cables: measurements and calculations. Superconductor Science and Technology, 2010, 23, 014023.	1.8	82
136	A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes. Superconductor Science and Technology, 2010, 23, 025001.	1.8	75
137	Design of a DC Resistive SFCL for Application to the 20 kV Distribution System. IEEE Transactions on Applied Superconductivity, 2010, 20, 1122-1126.	1.1	35
138	Periodic Space-Time Formulation for Numerical AC Loss Computation in Superconductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 3565-3568.	1.1	6
139	Current Density Distribution in Multiple YBCO Coated Conductors by Coupled Integral Equations. IEEE Transactions on Applied Superconductivity, 2009, 19, 2859-2862.	1.1	18
140	AC Loss and Voltage Signal in a Pancake Coil Made of Coated Conductor With Ferromagnetic Substrate. IEEE Transactions on Applied Superconductivity, 2009, 19, 2223-2227.	1.1	6
141	Experimental and Numerical Investigation of the Levitation Force Between Bulk Permanent Magnet and \${m MgB}_{2}\$ Disk. IEEE Transactions on Applied Superconductivity, 2009, 19, 2124-2128.	1.1	36
142	Dynamic field and current distributions in multifilamentary YBa2Cu3O7â^´î´ thin films with magnetic coupling. Journal of Applied Physics, 2009, 106, 063904.	1.1	2
143	Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Superconductor Science and Technology, 2009, 22, 034017.	1.8	81
144	AC losses in thin superconductors: the integral equation method applied to stacks and windings. Superconductor Science and Technology, 2009, 22, 075018.	1.8	45

#	Article	IF	CITATIONS
145	AC loss study of antiparallel connected YBCO coated conductors. Superconductor Science and Technology, 2009, 22, 055014.	1.8	52
146	Theoretical and experimental study of AC loss in high temperature superconductor single pancake coils. Superconductor Science and Technology, 2009, 22, 015006.	1.8	91
147	Finite-element simulations of field and current distributions in multifilamentary superconducting films. Superconductor Science and Technology, 2009, 22, 105015.	1.8	0
148	AC loss measurement and simulation of a coated conductor pancake coil with ferromagnetic parts. Superconductor Science and Technology, 2009, 22, 075007.	1.8	44
149	New EMTP-RV Equivalent Circuit Model of Core-Shielding Superconducting Fault Current Limiter Taking Into Account the Flux Diffusion Phenomenon. IEEE Transactions on Applied Superconductivity, 2009, 19, 1913-1917.	1.1	7
150	Modelling of a three-phase concentric HTS-cable. Physica B: Condensed Matter, 2008, 403, 405-409.	1.3	0
151	Integral equations for the current density in thin conductors and their solution by the finite-element method. Superconductor Science and Technology, 2008, 21, 105008.	1.8	60
152	Magneto-Thermal Modeling of Second-Generation HTS for Resistive Fault Current Limiter Design Purposes. IEEE Transactions on Applied Superconductivity, 2008, 18, 29-35.	1.1	79
153	Numerical Considerations About Using Finite-Element Methods to Compute AC Losses in HTS. IEEE Transactions on Applied Superconductivity, 2008, 18, 1733-1742.	1.1	33
154	Modeling of coated conductor pancake coils with a large number of turns. Superconductor Science and Technology, 2008, 21, 065014.	1.8	83
155	Magneto-thermal finite element modeling of 2nd generation HTS for FCL design purposes. Journal of Physics: Conference Series, 2008, 97, 012286.	0.3	10
156	Evaluation of two commercial finite element packages for calculating AC losses in 2-D high temperature superconducting strips. Journal of Physics: Conference Series, 2008, 97, 012030.	0.3	20
157	Stacks of YBCO Films Using Multiple IBAD Templates. IEEE Transactions on Applied Superconductivity, 2007, 17, 3577-3580.	1.1	7
158	Current distribution and ac loss for a superconducting rectangular strip with in-phase alternating current and applied field. Superconductor Science and Technology, 2007, 20, 351-364.	1.8	75
159	Interaction of magnetic field and magnetic history in high-temperature superconductors. Journal of Applied Physics, 2007, 102, .	1.1	33
160	Computer Modeling of YBCO Fault Current Limiter Strips Lines in Over-Critical Regime With Temperature Dependent Parameters. IEEE Transactions on Applied Superconductivity, 2007, 17, 1839-1842.	1.1	10
161	Modeling High-Temperature Superconducting Tapes by Means of Edge Finite Elements. IEEE Transactions on Applied Superconductivity, 2007, 17, 3155-3158.	1.1	56
162	Finite-element modelling of YBCO fault current limiter with temperature dependent parameters. Superconductor Science and Technology, 2007, 20, 338-344.	1.8	62

#	Article	IF	CITATIONS
163	Development of an edge-element model for AC loss computation of high-temperature superconductors. Superconductor Science and Technology, 2007, 20, 16-24.	1.8	402
164	Quantifying AC Losses in YBCO Coated Conductor Coils. IEEE Transactions on Applied Superconductivity, 2007, 17, 3187-3190.	1.1	12
165	Measuring transport AC losses in YBCO-coated conductor coils. Superconductor Science and Technology, 2007, 20, 794-799.	1.8	91
166	AC current driven dynamic vortex state in YBa2Cu3O7-x. Applied Physics A: Materials Science and Processing, 2007, 88, 601-604.	1.1	3
167	Magnetization AC losses of stacks of YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2006, 434, 185-190.	0.6	45
168	A strategy for the reduction of ac losses in YBCO coated conductors. Superconductor Science and Technology, 2006, 19, 227-232.	1.8	40
169	Study of ac loss in Bi-2223/Ag tape under the simultaneous action of ac transport current and ac magnetic field shifted in phase. Superconductor Science and Technology, 2006, 19, 397-404.	1.8	24
170	Sensitivity of the Field Trapped by Superconducting Bulks on the Parameters of the Magnetization Process. IEEE Transactions on Applied Superconductivity, 2006, 16, 1570-1573.	1.1	10
171	ac susceptibility and critical-current densities in sintered YBa2Cu3O7â^î´ superconductors. Applied Physics Letters, 2006, 89, 072501.	1.5	23
172	Comparison of the AC losses of BSCCO and YBCO conductors by means of numerical analysis. Superconductor Science and Technology, 2005, 18, 1300-1312.	1.8	48
173	Analysis of Magnetic Field and Geometry Effects for the Design of HTS Devices for AC Power Applications. IEEE Transactions on Applied Superconductivity, 2005, 15, 2074-2077.	1.1	2
174	Dynamic Field Mapping for Obtaining the Current Distribution in High-Temperature Superconducting Tapes. IEEE Transactions on Applied Superconductivity, 2005, 15, 3644-3647.	1.1	10
175	Phase Shifts of Parallel Currents in a Single-Layer Model of Superconducting Cables. IEEE Transactions on Applied Superconductivity, 2005, 15, 1779-1782.	1.1	3
176	3-D Finite Element Simulations of Strip Lines in a YBCO/Au Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2005, 15, 1998-2002.	1.1	16
177	Temperature Dependent Equivalent Circuit of a Magnetic-Shield Type SFCL. IEEE Transactions on Applied Superconductivity, 2005, 15, 2078-2081.	1.1	10
178	Finite-Element Method Modeling of Superconductors: From 2-D to 3-D. IEEE Transactions on Applied Superconductivity, 2005, 15, 17-25.	1.1	102
179	Modelling of coupling between superconductors of finite length using an integral formulation. Superconductor Science and Technology, 2004, 17, 1103-1112.	1.8	14
180	Prediction of resistive and hysteretic losses in a multi-layer high-Tcsuperconducting cable. Superconductor Science and Technology, 2004, 17, 409-416.	1.8	14

#	Article	IF	CITATIONS
181	A Comparison of Numerical Methods for Superconducting Tapes in the Critical State with Transverse Applied Field. European Physical Journal D, 2004, 54, 513-516.	0.4	0
182	Numerical modelling of a HTS cable in AC regime. Physica C: Superconductivity and Its Applications, 2004, 401, 176-181.	0.6	7
183	Modelling the E–J relation of high-Tc superconductors in an arbitrary current range. Physica C: Superconductivity and Its Applications, 2004, 401, 231-235.	0.6	90
184	Numerical Analysis of the Effects of the Magnetic Self-Field on the Transport Properties of a Multilayer HTS Cable. IEEE Transactions on Applied Superconductivity, 2004, 14, 94-102.	1.1	13
185	Equilibrium positions due to different cooling processes in superconducting levitation systems. Superconductor Science and Technology, 2004, 17, 828-832.	1.8	25
186	Magnetic-Shield-Type Fault Current Limiter Equivalent Circuit. IEEE Transactions on Applied Superconductivity, 2004, 14, 1966-1973.	1.1	16
187	3D modeling of coupling between superconducting filaments via resistive matrix in AC magnetic field. IEEE Transactions on Applied Superconductivity, 2003, 13, 3634-3637.	1.1	6
188	Magnetization distribution in a superconducting bulk by means of hysteretic material characteristic as constitutive law. IEEE Transactions on Magnetics, 2003, 39, 1345-1348.	1.2	1
189	Self-field and geometry effects in transport current applications of multifilamentary bi-2223/ag conductors. IEEE Transactions on Applied Superconductivity, 2003, 13, 3807-3813.	1.1	11
190	Numerical modeling of a HTS cable. IEEE Transactions on Applied Superconductivity, 2003, 13, 1886-1889.	1.1	10
191	Finite element method analysis of the coupling effect between superconducting filaments of different aspect ratio. Superconductor Science and Technology, 2003, 16, 1228-1234.	1.8	29
192	Comparison of numerical methods for modeling of superconductors. IEEE Transactions on Magnetics, 2002, 38, 849-852.	1.2	93
193	Numerical modelling of Bi-2223 multifilamentary tapes with position-dependent Jc. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1800-1805.	0.6	8
194	Optimization of (Bi,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 232 Td (Pb) ₂ Sr ₂ Ca ₂	sub>Cu<\. 0.6	sub>34
	Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 991-996.		
195	Development of Ag-sheathed Bi(2223) tapes with oriented filaments. Cryogenics, 1999, 39, 267-269.	0.9	5