Sudheendran Mavila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intramolecular Cross-Linking Methodologies for the Synthesis of Polymer Nanoparticles. Chemical Reviews, 2016, 116, 878-961.	23.0	321
2	Photoclick Chemistry: A Bright Idea. Chemical Reviews, 2021, 121, 6915-6990.	23.0	113
3	Bistable and photoswitchable states of matter. Nature Communications, 2018, 9, 2804.	5.8	111
4	Polycyclooctadiene Complexes of Rhodium(I): Direct Access to Organometallic Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 5767-5770.	7.2	81
5	A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polymer Chemistry, 2018, 9, 4523-4534.	1.9	78
6	A general approach to mono- and bimetallic organometallic nanoparticles. Chemical Science, 2014, 5, 4196-4203.	3.7	70
7	Thiol–Anhydride Dynamic Reversible Networks. Angewandte Chemie - International Edition, 2020, 59, 9345-9349.	7.2	57
8	Dynamic and Responsive DNA-like Polymers. Journal of the American Chemical Society, 2018, 140, 13594-13598.	6.6	45
9	Productive Exchange of Thiols and Thioesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Letters, 2018, 7, 1312-1316.	2.3	40
10	High Dynamic Range (Δ <i>n</i>) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer. ACS Applied Materials & Interfaces, 2018, 10, 1217-1224.	4.0	39
11	Regioselective Chromatic Orthogonality with Lightâ€Activated Metathesis Catalysts. Angewandte Chemie - International Edition, 2015, 54, 12384-12388.	7.2	36
12	Mixed mechanisms of bond exchange in covalent adaptable networks: monitoring the contribution of reversible exchange and reversible addition in thiol–succinic anhydride dynamic networks. Polymer Chemistry, 2020, 11, 5365-5376.	1.9	35
13	High Refractive Index Photopolymers by Thiol–Yne "Click―Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 15647-15658.	4.0	34
14	Holographic Photopolymer Material with High Dynamic Range (Δ <i>n</i>) via Thiol–Ene Click Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 44103-44109.	4.0	30
15	Single-chain polybutadiene organometallic nanoparticles: an experimental and theoretical study. Chemical Science, 2016, 7, 1773-1778.	3.7	28
16	Regioselective Chromatic Orthogonality with Lightâ€Activated Metathesis Catalysts. Angewandte Chemie, 2015, 127, 12561-12565.	1.6	26
17	Cyclopolymerization-derived block-copolymers of 4,4-bis(octyloxymethyl)-1,6-heptadiyne with 4,4-dipropargyl malonodinitrile for use in photovoltaics. Polymer Chemistry, 2013, 4, 1590-1599.	1.9	24
18	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22

#	Article	IF	CITATIONS
19	Realizing High Refractive Index Thiol-X Materials: A General and Scalable Synthetic Approach. , 2019, 1, 582-588.		21
20	A Continuous Bioreactor Prepared via the Immobilization of Trypsin on Aldehyde-Functionalized, Ring-Opening Metathesis Polymerization-Derived Monoliths. Macromolecules, 2010, 43, 9601-9607.	2.2	17
21	Thiol–Anhydride Dynamic Reversible Networks. Angewandte Chemie, 2020, 132, 9431-9435.	1.6	15
22	Manipulating the Relative Rates of Reaction and Diffusion in a Holographic Photopolymer Based on Thiol–Ene Chemistry. Macromolecules, 2022, 55, 1822-1833.	2.2	13
23	pâ€Đoping and Fiber Spinning of Poly(heptadiyne)s. Macromolecular Chemistry and Physics, 2013, 214, 1047-1051.	1.1	8
24	Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chemical Communications, 2018, 54, 8108-8111.	2.2	8
25	Towards High-Efficiency Synthesis of Xenonucleic Acids. Trends in Chemistry, 2020, 2, 43-56.	4.4	8
26	Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
27	Heterogenization of ferrocene palladacycle catalysts on ROMP-derived monolithic supports and application to a Michael addition. New Journal of Chemistry, 2014, 38, 5597-5607.	1.4	5
28	Formation of lipid vesicles <i>in situ</i> utilizing the thiol-Michael reaction. Soft Matter, 2018, 14, 7645-7652.	1.2	5
29	Systematic Modulation and Structure–Property Relationships in Photopolymerizable Thermoplastics. ACS Applied Polymer Materials, 2021, 3, 1171-1181.	2.0	4
30	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie, 0, , .	1.6	1
31	Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angewandte Chemie, 0, , .	1.6	0
32	High dynamic range two-stage photopolymer materials through enhanced solubility high refractive index writing monomers. , 2018, , .		0
33	Two-stage holographic photopolymers with high dynamic range. , 2019, , .		0