Jordi Suñe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232756/publications.pdf

Version: 2024-02-01

71102 85541 6,871 295 41 71 citations h-index g-index papers 300 300 300 3584 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Volume Resistive Switching in Metallic Perovskite Oxides Driven by the Metal-Insulator Transition. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 289-310.	0.5	O
2	SPICE Implementation of the Dynamic Memdiode Model for Bipolar Resistive Switching Devices. Micromachines, 2022, 13, 330.	2.9	20
3	SPICE Model for Complementary Resistive Switching Devices Based on Anti-Serially Connected Quasi-Static Memdiodes. Solid-State Electronics, 2022, , 108312.	1.4	O
4	Minimization of the Line Resistance Impact on Memdiode-Based Simulations of Multilayer Perceptron Arrays Applied to Pattern Recognition. Journal of Low Power Electronics and Applications, 2021, 11, 9.	2.0	11
5	A New Perspective Towards the Understanding of the Frequency-Dependent Behavior of Memristive Devices. IEEE Electron Device Letters, 2021, 42, 565-568.	3.9	13
6	On the Thermal Models for Resistive Random Access Memory Circuit Simulation. Nanomaterials, 2021, 11, 1261.	4.1	39
7	SPICE Simulation of RRAM-Based Cross-Point Arrays Using the Dynamic Memdiode Model. Frontiers in Physics, 2021, 9, .	2.1	5
8	A simple, robust, and accurate compact model for a wide variety of complementary resistive switching devices. Solid-State Electronics, 2021, 185, 108083.	1.4	2
9	Tunability Properties and Compact Modeling of HfOâ,,-Based Complementary Resistive Switches Using a Three-Terminal Subcircuit. IEEE Transactions on Electron Devices, 2021, , 1-8.	3.0	3
10	Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults. Electronics (Switzerland), 2021, 10, 2427.	3.1	3
11	Application of artificial neural networks to the identification of weak electrical regions in large area MIM structures. Microelectronics Reliability, 2021, , 114312.	1.7	O
12	Standards for the Characterization of Endurance in Resistive Switching Devices. ACS Nano, 2021, 15, 17214-17231.	14.6	128
13	Failure Analysis of Large Area Pt/HfO2/Pt Capacitors Using Multilayer Perceptrons. , 2021, , .		O
14	Application of the Quasi-Static Memdiode Model in Cross-Point Arrays for Large Dataset Pattern Recognition. IEEE Access, 2020, 8, 202174-202193.	4.2	19
15	Memristive State Equation for Bipolar Resistive Switching Devices Based on a Dynamic Balance Model and Its Equivalent Circuit Representation. IEEE Nanotechnology Magazine, 2020, 19, 837-840.	2.0	14
16	Memristors for Neuromorphic Circuits and Artificial Intelligence Applications. Materials, 2020, 13, 938.	2.9	29
17	Multi-Terminal Transistor-Like Devices Based on Strongly Correlated Metallic Oxides for Neuromorphic Applications. Materials, 2020, 13, 281.	2.9	3
18	Impact of the forming and cycling processes on the electrical and physical degradation characteristics of HfO2-based resistive switching devices. Thin Solid Films, 2020, 706, 138027.	1.8	2

#	Article	IF	Citations
19	Application of the Clustering Model to Time-Correlated Oxide Breakdown Events in Multilevel Antifuse Memory Cells. IEEE Electron Device Letters, 2020, 41, 1770-1773.	3.9	6
20	Analysis of the successive breakdown statistics of multilayer Al2O3/HfO2 gate stacks using the time-dependent clustering model. Microelectronics Reliability, 2020, 114, 113748.	1.7	3
21	Study on the Connection Between the Set Transient in RRAMs and the Progressive Breakdown of Thin Oxides. IEEE Transactions on Electron Devices, 2019, 66, 3349-3355.	3.0	12
22	On the Application of a Diffusive Memristor Compact Model to Neuromorphic Circuits. Materials, 2019, 12, 2260.	2.9	3
23	Detection of inhibitory effects in the generation of breakdown spots in HfO2-based MIM devices. Microelectronic Engineering, 2019, 215, 111023.	2.4	3
24	Simple method for monitoring the switching activity in memristive cross-point arrays with line resistance effects. Microelectronics Reliability, 2019, 100-101, 113327.	1.7	1
25	SPICE model for the current-voltage characteristic of resistive switching devices including the snapback effect. Microelectronic Engineering, 2019, 215, 110998.	2.4	6
26	Analysis and simulation of the multiple resistive switching modes occurring in $HfOx$ -based resistive random access memories using memdiodes. Journal of Applied Physics, 2019, 125, .	2.5	26
27	Assessing the Correlation Between Location and Size of Catastrophic Breakdown Events in High-K MIM Capacitors. IEEE Transactions on Device and Materials Reliability, 2019, 19, 452-460.	2.0	4
28	Engineering Oxygen Migration for Homogeneous Volume Resistive Switching in 3â€√erminal Devices. Advanced Electronic Materials, 2019, 5, 1800629.	5.1	18
29	An improved analytical model for the statistics of SET emergence point in HfO2 memristive device. AIP Advances, 2019, 9, 025118.	1.3	1
30	Recommended Methods to Study Resistive Switching Devices. Advanced Electronic Materials, 2019, 5, 1800143.	5.1	452
31	An in-depth description of bipolar resistive switching in Cu/HfOx/Pt devices, a 3D kinetic Monte Carlo simulation approach. Journal of Applied Physics, 2018, 123, .	2.5	21
32	Switching Voltage and Time Statistics of Filamentary Conductive Paths in HfO ₂ -Based ReRAM Devices. IEEE Electron Device Letters, 2018, 39, 656-659.	3.9	20
33	Characterization of HfO 2 -based devices with indication of second order memristor effects. Microelectronic Engineering, 2018, 195, 101-106.	2.4	18
34	SPICE simulation of memristive circuits based on memdiodes with sigmoidal threshold functions. International Journal of Circuit Theory and Applications, 2018, 46, 39-49.	2.0	6
35	A new method for estimating the conductive filament temperature in OxRAM devices based on escape rate theory. Microelectronics Reliability, 2018, 88-90, 142-146.	1.7	4
36	Characterization of the Failure Site Distribution in MIM Devices Using Zoomed Wavelet Analysis. Journal of Electronic Materials, 2018, 47, 5033-5038.	2.2	3

#	Article	IF	Citations
37	Electrochemical Tuning of Metal Insulator Transition and Nonvolatile Resistive Switching in Superconducting Films. ACS Applied Materials & Interfaces, 2018, 10, 30522-30531.	8.0	17
38	Spatial analysis of failure sites in large area MIM capacitors using wavelets. Microelectronic Engineering, 2017, 178, 10-16.	2.4	4
39	Effect of the voltage ramp rate on the set and reset voltages of ReRAM devices. Microelectronic Engineering, 2017, 178, 61-65.	2.4	15
40	SPICE simulation of 1T1R structures based on a logistic hysteresis operator., 2017,,.		4
41	Modeling of the multilevel conduction characteristics and fatigue profile of Ag/La1/3Ca2/3MnO3/Pt structures using a compact memristive approach. Journal of Applied Physics, 2017, 121, .	2.5	9
42	A cell-based clustering model for the reset statistics in RRAM. Applied Physics Letters, 2017, 110, .	3.3	9
43	Function-fit model for the rate of conducting filament generation in constant voltage-stressed multilayer oxide stacks. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 01A108.	1.2	1
44	Voltage-Driven Hysteresis Model for Resistive Switching: SPICE Modeling and Circuit Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 2044-2051.	2.7	31
45	\$\${ SIM}^2{ RRAM}\$\$ S I M 2 R R A M : a physical model for RRAM devices simulation. Journal of Computational Electronics, 2017, 16, 1095-1120.	2.5	45
46	Investigation on the Conductive Filament Growth Dynamics in Resistive Switching Memory via a Universal Monte Carlo Simulator. Scientific Reports, 2017, 7, 11204.	3.3	20
47	Volume Resistive Switching in metallic perovskite oxides driven by the Metal-Insulator Transition. Journal of Electroceramics, 2017, 39, 185-196.	2.0	26
48	Identification of the generation/rupture mechanism of filamentary conductive paths in ReRAM devices using oxide failure analysis. Microelectronics Reliability, 2017, 76-77, 178-183.	1.7	7
49	Resistive Switching with Self-Rectifying Tunability and Influence of the Oxide Layer Thickness in Ni/HfO2/n+-Si RRAM Devices. IEEE Transactions on Electron Devices, 2017, 64, 3159-3166.	3.0	24
50	Exploratory study and application of the angular wavelet analysis for assessing the spatial distribution of breakdown spots in Pt/HfO2/Pt structures. Journal of Applied Physics, 2017, 122, 215304.	2.5	7
51	SPICE model for the ramp rate effect in the reset characteristic of memristive devices. , 2017, , .		3
52	Statistical analysis of $\hat{a}\in \mathbb{C}$ Tail Bits $\hat{a}\in \mathbb{C}$ phenomena with defect clustering in RESET switching process of RRAM devices. , 2017, , .		1
53	Equivalent circuit model for the electron transport in 2D resistive switching material systems. , 2017, , \cdot		6
54	The statistics of set time of oxide-based resistive switching memory. , 2016, , .		0

#	Article	IF	CITATIONS
55	Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device. Nanoscale Research Letters, 2016, 11, 269.	5.7	13
56	A new compact model for bipolar RRAMs based on truncated-cone conductive filaments—a Verilog-A approach. Semiconductor Science and Technology, 2016, 31, 115013.	2.0	43
57	Modeling of the major and minor I-V loops in La0.3Ca _{0.7} MnO ₃ films using asymmetric logistic hysterons., 2015,,.		0
58	Modeling of the switching I-V characteristics in ultrathin (5 nm) atomic layer deposited HfO2 films using the logistic hysteron. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 01A102.	1.2	6
59	A thorough investigation of the progressive reset dynamics in HfO2-based resistive switching structures. Applied Physics Letters, 2015, 107, 113507.	3.3	6
60	Modeling of the I-V and I-t characteristics of multiferroic BiFeO < inf > 3 < / inf > layers. , 2015, , .		0
61	Modeling of the conduction characteristics of voltage-driven bipolar RRAMs including turning point effects. , $2015, , .$		1
62	Impact of Intercell and Intracell Variability on Forming and Switching Parameters in RRAM Arrays. IEEE Transactions on Electron Devices, 2015, 62, 2502-2509.	3.0	52
63	Conductance Quantization in Resistive Random Access Memory. Nanoscale Research Letters, 2015, 10, 420.	5.7	81
64	Equivalent circuit modeling of the bistable conduction characteristics in electroformed thin dielectric films. Microelectronics Reliability, 2015, 55, 1-14.	1.7	21
65	Multiple Diode-Like Conduction in Resistive Switching SiO <italic>_x</italic> -Based MIM Devices. IEEE Nanotechnology Magazine, 2015, 14, 15-17.	2.0	7
66	An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs. Solid-State Electronics, 2015, 111, 47-51.	1.4	41
67	Resistive switching in CeO2/La0.8Sr0.2MnO3 bilayer for non-volatile memory applications. Microelectronic Engineering, 2015, 147, 37-40.	2.4	30
68	Breakdown time statistics of successive failure events in constant voltage-stressed Al2O3/HfO2 nanolaminates. Microelectronic Engineering, 2015, 147, 85-88.	2.4	3
69	Temperature and polarity dependence of the switching behavior of Ni/HfO2-based RRAM devices. Microelectronic Engineering, 2015, 147, 75-78.	2.4	13
70	Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation. Applied Physics Letters, $2015,106,106$	3. 3	35
71	Model for the Current–Voltage Characteristic of Resistive Switches Based on Recursive Hysteretic Operators. IEEE Electron Device Letters, 2015, 36, 944-946.	3.9	4
72	Electrical characterization of multiple leakage current paths in HfO2/Al2O3-based nanolaminates. Microelectronics Reliability, 2015, 55, 1442-1445.	1.7	3

#	Article	IF	CITATIONS
73	A Physical Model for the Statistics of the Set Switching Time of Resistive RAM Measured With the Width-Adjusting Pulse Operation Method. IEEE Electron Device Letters, 2015, 36, 1303-1306.	3.9	15
74	Set statistics in conductive bridge random access memory device with Cu/HfO2/Pt structure. Applied Physics Letters, 2014, 105, .	3.3	42
75	On the properties of conducting filament in ReRAM. , 2014, , .		4
76	Failure Analysis of MIM and MIS Structures Using Point-to-Event Distance and Angular Probability Distributions. IEEE Transactions on Device and Materials Reliability, 2014, 14, 1080-1090.	2.0	5
77	Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO3/SrRuO3 switches. Applied Physics Letters, 2014, 105, .	3.3	13
78	Statistical characteristics of reset switching in Cu/HfO2/Pt resistive switching memory. Nanoscale Research Letters, 2014, 9, 2500.	5.7	16
79	Three-state resistive switching in HfO2-based RRAM. Solid-State Electronics, 2014, 98, 38-44.	1.4	10
80	Engineering of the Chemical Reactivity of the Ti/HfO ₂ Interface for RRAM: Experiment and Theory ACS Applied Materials & Interfaces, 2014, 6, 5056-5060.	8.0	55
81	A comprehensive analysis on progressive reset transitions in RRAMs. Journal Physics D: Applied Physics, 2014, 47, 205102.	2.8	31
82	Equivalent circuit model for the switching conduction characteristics of TiO <inf>2 </inf> -based MIM structures. , 2014, , .		1
83	Simulation of thermal reset transitions in resistive switching memories including quantum effects. Journal of Applied Physics, 2014, 115, .	2.5	61
84	Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices. Journal of Applied Physics, 2014, 115, .	2.5	54
85	Single-parameter model for the post-breakdown conduction characteristics of HoTiOx-based MIM capacitors. Microelectronics Reliability, 2014, 54, 1707-1711.	1.7	0
86	Assessing the spatial correlation and conduction state of breakdown spot patterns in Pt/HfO2/Pt structures using transient infrared thermography. Journal of Applied Physics, 2014, 115, 174502.	2.5	5
87	Investigation on the RESET switching mechanism of bipolar Cu/HfO ₂ /Pt RRAM devices with a statistical methodology. Journal Physics D: Applied Physics, 2013, 46, 245107.	2.8	29
88	Direct observation of the generation of breakdown spots in MIM structures under constant voltage stress. Microelectronics Reliability, 2013, 53, 1257-1260.	1.7	3
89	Experimental evidence for a quantum wire state in HfO <inf>2</inf> -based VCM-RRAM., 2013,,.		1
90	Modeling of the post-breakdown l <inf>O</inf> V <inf>D</inf> characteristics of La <inf>2</inf> O <inf>3</inf> -based MOS transistors., 2013,,.		0

#	Article	IF	Citations
91	Exploring the field-effect control of breakdown paths in lateral W/HfO $<$ inf $>$ 2 $<$ /inf $>$ /W structures. , 2013, , .		0
92	Compact analytical models for the SET and RESET switching statistics of RRAM inspired in the cell-based percolation model of gate dielectric breakdown., 2013,,.		5
93	Statistical approach to the RESET switching of the HfO <inf>2</inf> -based solid electrolyte memory. , 2013, , .		0
94	Field-effect control of breakdown paths in HfO2 based MIM structures. Microelectronics Reliability, 2013, 53, 1346-1350.	1.7	1
95	Modeling of the output characteristics of advanced n-MOSFETs after a severe gate-to-channel dielectric breakdown. Microelectronic Engineering, 2013, 109, 322-325.	2.4	1
96	Analysis and Simulation of the Postbreakdown \$I-V\$ Characteristics of n-MOS Transistors in the Linear Response Regime. IEEE Electron Device Letters, 2013, 34, 798-800.	3.9	3
97	Effect of an ultrathin SiO2 interfacial layer on the hysteretic current–voltage characteristics of CeOx-based metal–insulator–metal structures. Thin Solid Films, 2013, 533, 38-42.	1.8	1
98	Voltage and Power-Controlled Regimes in the Progressive Unipolar RESET Transition of HfO2-Based RRAM. Scientific Reports, 2013, 3, 2929.	3.3	135
99	Nonhomogeneous spatial distribution of filamentary leakage current paths in circular area Pt/HfO2/Pt capacitors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 01A107.	1.2	9
100	Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory. Applied Physics Letters, 2013, 103, .	3.3	19
101	Threshold Switching and Conductance Quantization in Al/HfO ₂ /Si(p) Structures. Japanese Journal of Applied Physics, 2013, 52, 04CD06.	1.5	14
102	Cycle-to-Cycle Intrinsic RESET Statistics in ${m HfO}_{2}$ -Based Unipolar RRAM Devices. IEEE Electron Device Letters, 2013, 34, 623-625.	3.9	101
103	A Model for the Set Statistics of RRAM Inspired in the Percolation Model of Oxide Breakdown. IEEE Electron Device Letters, 2013, 34, 999-1001.	3.9	122
104	Quantum-size effects in hafnium-oxide resistive switching. Applied Physics Letters, 2013, 102, 183505.	3.3	151
105	Multilevel recording in Bi-deficient Pt/BFO/SRO heterostructures based on ferroelectric resistive switching targeting high-density information storage in nonvolatile memories. Applied Physics Letters, 2013, 103, .	3.3	20
106	Recent advances in dielectric breakdown of modern gate dielectrics. , 2013, , .		5
107	Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt capacitors using nearest neighbor statistics. Journal of Applied Physics, 2013, 114, 154112.	2.5	8
108	Generalized hydrogen release-reaction model for the breakdown of modern gate dielectrics. Journal of Applied Physics, 2013, 114, .	2.5	17

#	Article	IF	CITATIONS
109	An in-depth simulation study of thermal reset transitions in resistive switching memories. Journal of Applied Physics, 2013, 114, .	2.5	58
110	Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> /metal structures. Physical Review B, 2012, 86, .	3.2	70
111	Degradation analysis and characterization of multifilamentary conduction patterns in high-field stressed atomic-layer-deposited TiO2/Al2O3 nanolaminates on GaAs. Journal of Applied Physics, 2012, 112, 064113.	2.5	12
112	Analysis and modeling of resistive switching statistics. Journal of Applied Physics, 2012, 111, .	2.5	97
113	Generalized successive failure methodology for non-weibull distributions and its applications to SiO <inf>2</inf> or high-k/SiO <inf>2</inf> bilayer dielectrics and extrinsic failure mode., 2012,,.		1
114	Electrical evidence of atomic-size effects in the conduction filament of RRAM., 2012, , .		0
115	The Quantum Point-Contact Memristor. IEEE Electron Device Letters, 2012, 33, 1474-1476.	3.9	46
116	Temperature dependence of TDDB voltage acceleration in high-κ/ SiO <inf>2</inf> bilayers and SiO <inf>2</inf> gate dielectrics., 2012,,.		1
117	From post-breakdown conduction to resistive switching effect in thin dielectric films. , 2012, , .		3
118	Electron transport in CeO <inf>x</inf> -based resistive switching devices., 2012,,.		0
119	Accurate Calculation of Gate Tunneling Current in Double-Gate and Single-Gate SOI MOSFETs Through Gate Dielectric Stacks. IEEE Transactions on Electron Devices, 2012, 59, 2589-2596.	3.0	9
120	Spatial statistics for micro/nanoelectronics and materials science. , 2012, , .		1
121	Study of the spatial distribution of breakdown spots in MOS devices in case of important edge effect anomalies. , 2012, , .		1
122	Explicit model for direct tunneling current in double-gate MOSFETs through a dielectric stack. Solid-State Electronics, 2012, 76, 19-24.	1.4	2
123	Analysis and modeling of the gate leakage current in advanced nMOSFET devices with severe gate-to-drain dielectric breakdown. Microelectronics Reliability, 2012, 52, 1909-1912.	1.7	2
124	Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices. Applied Physics Letters, 2012, 101, .	3.3	43
125	Quantum point contact model of filamentary conduction in resistive switching memories. , 2012, , .		10
126	Modeling the breakdown statistics of Al2O3/HfO2 nanolaminates grown by atomic-layer-deposition. Solid-State Electronics, 2012, 71, 48-52.	1.4	15

#	Article	IF	Citations
127	Explicit model for the gate tunneling current in double-gate MOSFETs. Solid-State Electronics, 2012, 68, 93-97.	1.4	9
128	Degradation and breakdown characteristics of Al/HfYOx/GaAs capacitors. Thin Solid Films, 2012, 520, 2956-2959.	1.8	1
129	Toy model for the progressive breakdown dynamics of ultrathin gate dielectrics. , 2011, , .		0
130	From dielectric failure to memory function: Learning from oxide breakdown for improved understanding of resistive switching memories. , $2011, \ldots$		4
131	Reset Statistics of NiO-Based Resistive Switching Memories. IEEE Electron Device Letters, 2011, 32, 1570-1572.	3.9	68
132	Post-breakdown statistics and acceleration characteristics in high-K dielectric stacks. , 2011, , .		6
133	Initial leakage current related to extrinsic breakdown in HfO2/Al2O3 nanolaminate ALD dielectrics. Microelectronic Engineering, 2011, 88, 1380-1383.	2.4	17
134	Modeling the breakdown statistics of Al <inf>/HfO<inf>2</inf> nanolaminates grown by atomic-layer-deposition., 2011,,.</inf>		1
135	Cell-based models for the switching statistics of RRAM. , 2011, , .		2
136	A strong analogy between the dielectric breakdown of high-K gate stacks and the progressive breakdown of ultrathin oxides. Journal of Applied Physics, 2011, 109, 124115.	2.5	14
137	Progressive breakdown dynamics and entropy production in ultrathin SiO2 gate oxides. Applied Physics Letters, $2011, 98, \ldots$	3.3	3
138	Pattern transfer optimization for the fabrication of arrays of silicon nanowires. Microelectronic Engineering, 2010, 87, 1479-1482.	2.4	1
139	Explicit quantum potential and charge model for double-gate MOSFETs. Solid-State Electronics, 2010, 54, 530-535.	1.4	7
140	Relating Extrinsic Breakdown Statistics to the Initial Current Leakage Distribution in Gate Oxides. ECS Transactions, 2010, 27, 243-248.	0.5	2
141	High-K dielectric stack percolation breakdown statistics. , 2010, , .		2
142	Many-particle transport in the channel of quantum wire double-gate field-effect transistors with charged atomistic impurities. Journal of Applied Physics, 2010, 108, 043706.	2.5	8
143	Gate stack insulator breakdown when the interface layer thickness is scaled toward zero. Applied Physics Letters, 2010, 97, .	3.3	11
144	Modeling the breakdown statistics of gate dielectric stacks including percolation and progressive breakdown. , 2010, , .		4

#	Article	IF	CITATIONS
145	A compact analytic model for the breakdown distribution of gate stack dielectrics. , 2010, , .		11
146	Breakdown Statistics of Gate Dielectric Stacks. ECS Transactions, 2010, 27, 249-254.	0.5	0
147	Time-dependent boundary conditions with lead-sample Coulomb correlations: Application to classical and quantum nanoscale electron device simulators. Physical Review B, 2010, 82, .	3.2	32
148	Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices. Physical Review B, 2009, 79, .	3.2	62
149	Towards a viable TDDB reliability assessment methodology: From breakdown physics to circuit failure. , 2009, , .		0
150	On Voltage Acceleration Models of Time to Breakdownâ€"Part I: Experimental and Analysis Methodologies. IEEE Transactions on Electron Devices, 2009, , .	3.0	18
151	On Voltage Acceleration Models of Time to Breakdown—Part II: Experimental Results and Voltage Dependence of Weibull Slope in the FN Regime. IEEE Transactions on Electron Devices, 2009, , .	3.0	9
152	Analytical Cell-Based Model for the Breakdown Statistics of Multilayer Insulator Stacks. IEEE Electron Device Letters, 2009, 30, 1359-1361.	3.9	41
153	Comprehensive physics-based breakdown model for reliability assessment of oxides with thickness ranging from 1 nm up to 12 nm. Reliability Physics Symposium, 2009 IEEE International, 2009, , .	0.0	23
154	A viable and comprehensive TDDB assessment methodology for investigation of SRAM V <inf>min</inf> failure. , 2009, , .		4
155	Monte Carlo simulations of nanometric devices beyond the"mean-field―approximation. Journal of Computational Electronics, 2008, 7, 197-200.	2.5	1
156	Boundary conditions with Pauli exclusion and charge neutrality: application to the Monte Carlo simulation of ballistic nanoscale devices. Journal of Computational Electronics, 2008, 7, 213-216.	2.5	13
157	A Compact Model for Oxide Breakdown Failure Distribution in Ultrathin Oxides Showing Progressive Breakdown. IEEE Electron Device Letters, 2008, 29, 949-951.	3.9	29
158	Failure-current based oxide reliability assessment methodology. , 2008, , .		6
159	Modeling Transport in Ultrathin Si Nanowires: Charged versus Neutral Impurities. Nano Letters, 2008, 8, 2825-2828.	9.1	34
160	Spin-dependent injection model for Monte Carlo device simulation. Journal of Applied Physics, 2008, 104, .	2.5	2
161	High-frequency behavior of the Datta–Das spin transistor. Applied Physics Letters, 2008, 93, 193502.	3.3	0
162	A simple drain current model for Schottky-barrier carbon nanotube field effect transistors. Nanotechnology, 2007, 18, 419001.	2.6	9

#	Article	IF	Citations
163	Ordered arrays of quantum wires through hole patterning: ab initio and empirical electronic structure calculations. Applied Physics Letters, 2007, 90, 083118.	3.3	8
164	Physics-Based Percolation Model of Oxide Breakdown. ECS Transactions, 2007, 8, 177-183.	0.5	0
165	On the progressive breakdown statistical distribution and its voltage acceleration. , 2007, , .		18
166	A physics-based deconstruction of the percolation model of oxide breakdown. Microelectronic Engineering, 2007, 84, 1917-1920.	2.4	13
167	A drain current model for Schottky-barrier CNT-FETs. Journal of Computational Electronics, 2007, 5, 361-364.	2.5	6
168	Eigenstate fitting in the k $\hat{A}\cdot$ p method. Journal of Computational Electronics, 2007, 6, 195-198.	2.5	1
169	Statistical and voltage scaling properties of post-breakdown for ultra-thin-oxide PFETs in inversion mode. , 2006, , .		7
170	Post-Breakdown Characteristics of Extrinsic Failure Modes for Ultra-Thin Gate Oxides. , 2006, , .		5
171	Statistics of competing post-breakdown failure modes in ultrathin MOS devices. IEEE Transactions on Electron Devices, 2006, 53, 224-234.	3.0	34
172	Comment on "New Current–Voltage Model for Surrounding-Gate Metal Oxide Semiconductor Field-Effect Transistors― Japanese Journal of Applied Physics, 2006, 45, 6057-6057.	1.5	1
173	Power-law voltage acceleration: A key element for ultra-thin gate oxide reliability. Microelectronics Reliability, 2005, 45, 1809-1834.	1.7	131
174	Temperature-dependent transition to progressive breakdown in thin silicon dioxide based gate dielectrics. Applied Physics Letters, 2005, 86, 193502.	3.3	6
175	The effects of device dimensions on the post-breakdown characteristics of ultrathin gate oxides. IEEE Electron Device Letters, 2005, 26, 401-403.	3.9	19
176	Simulation of the time-dependent breakdown characteristics of heavy-ion irradiated gate oxides using a mean-reverting Poisson-Gaussian process. IEEE Transactions on Nuclear Science, 2005, 52, 1462-1467.	2.0	2
177	Compact Model of the Nanoscale Gate-All-Around MOSFET. , 2005, , 321-326.		1
178	Analog performance of the nanoscale double-gate metal-oxide-semiconductor field-effect-transistor near the ultimate scaling limits. Journal of Applied Physics, 2004, 96, 5271-5276.	2.5	35
179	Modeling of Nanoscale Gate-All-Around MOSFETs. IEEE Electron Device Letters, 2004, 25, 314-316.	3.9	136
180	Successive Oxide Breakdown Statistics: Correlation Effects, Reliability Methodologies, and Their Limits. IEEE Transactions on Electron Devices, 2004, 51, 1584-1592.	3.0	37

#	Article	IF	Citations
181	Electron transport through broken down ultra-thin SiO2 layers in MOS devices. Microelectronics Reliability, 2004, 44, 1-23.	1.7	108
182	Critical evaluation of hard-breakdown based reliability methodologies for ultrathin gate oxides. Microelectronic Engineering, 2004, 72, 16-23.	2.4	4
183	Limits of the successive breakdown statistics to assess chip reliability. Microelectronic Engineering, 2004, 72, 39-44.	2.4	7
184	Continuous Analytic I–V Model for Surrounding-Gate MOSFETs. IEEE Electron Device Letters, 2004, 25, 571-573.	3.9	254
185	Hydrogen-Release Mechanisms in the Breakdown of ThinSiO2Films. Physical Review Letters, 2004, 92, 087601.	7.8	68
186	Critical reliability challenges in scaling SiO2-based dielectric to its limit. Microelectronics Reliability, 2003, 43, 1175-1184.	1.7	26
187	Statistics of soft and hard breakdown in thin SiO2 gate oxides. Microelectronics Reliability, 2003, 43, 1185-1192.	1.7	15
188	Unified compact model for the ballistic quantum wire and quantum well metal-oxide-semiconductor field-effect-transistor. Journal of Applied Physics, 2003, 94, 1061-1068.	2.5	77
189	Successive breakdown events and their relation with soft and hard breakdown modes. IEEE Electron Device Letters, 2003, 24, 692-694.	3.9	17
190	Statistics of successive breakdown events in gate oxides. IEEE Electron Device Letters, 2003, 24, 272-274.	3.9	69
191	BREAKDOWN MODES AND BREAKDOWN STATISTICS OF ULTRATHIN SiO < sub>2 GATE OXIDES. Selected Topics in Electornics and Systems, 2002, , 173-232.	0.2	4
192	High frequency components of current fluctuations in semiconductor tunneling barriers. Applied Physics Letters, 2002, 80, 4048-4050.	3.3	15
193	New insights in polarity-dependent oxide breakdown for ultrathin gate oxide. IEEE Electron Device Letters, 2002, 23, 494-496.	3.9	29
194	On the weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination-part II: experimental results and the effects of stress conditions. IEEE Transactions on Electron Devices, 2002, 49, 2141-2150.	3.0	87
195	Experimental evidence of T/sub BD/ power-law for voltage dependence of oxide breakdown. IEEE Transactions on Electron Devices, 2002, 49, 2244-2253.	3.0	128
196	Interplay of voltage and temperature acceleration of oxide breakdown for ultra-thin gate oxides. Solid-State Electronics, 2002, 46, 1787-1798.	1.4	99
197	Quantitative two-step hydrogen model of SiO2 gate oxide breakdown. Solid-State Electronics, 2002, 46, 1825-1837.	1.4	14
198	Study of Noise Properties in Nanoscale Electronic Devices Using Quantum Trajectories. Journal of Computational Electronics, 2002, 1, 43-48.	2.5	0

#	Article	IF	Citations
199	Approach to study the noise properties in nanoscale electronic devices. Applied Physics Letters, 2001, 79, 1703-1705.	3.3	18
200	Non-equilibrium gate tunneling current in ultra-thin (<2 nm) oxide MOS devices. Journal of Non-Crystalline Solids, 2001, 280, 127-131.	3.1	3
201	Linear and non-linear conduction regimes in broken down gate oxides. Journal of Non-Crystalline Solids, 2001, 280, 132-137.	3.1	2
202	New physics-based analytic approach to the thin-oxide breakdown statistics. IEEE Electron Device Letters, 2001, 22, 296-298.	3.9	249
203	Study of Electronic Transport in Tunneling Devices Using an Incoherent Superposition of Time Dependent Wave Packets. VLSI Design, 2001, 13, 145-148.	0.5	0
204	BREAKDOWN MODES AND BREAKDOWN STATISTICS OF ULTRATHIN SiO2 GATE OXIDES. International Journal of High Speed Electronics and Systems, 2001, 11, 789-848.	0.7	13
205	Modeling the breakdown and breakdown statistics of ultra-thin SiO2 gate oxides. Microelectronic Engineering, 2001, 59, 149-153.	2.4	16
206	Breakdown and anti-breakdown events in high-field stressed ultrathin gate oxides. Solid-State Electronics, 2001, 45, 1327-1332.	1.4	6
207	Two-step stress methodology for monitoring the gate oxide degradation in MOS devices. Solid-State Electronics, 2001, 45, 1317-1325.	1.4	4
208	Interplay of voltage and temperature acceleration of oxide breakdown for ultra-thin oxides. Microelectronic Engineering, 2001, 59, 25-31.	2.4	12
209	Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films. Applied Physics Letters, 2001, 78, 225-227.	3.3	17
210	Post-radiation-induced soft breakdown conduction properties as a function of temperature. Applied Physics Letters, 2001, 79, 1336-1338.	3.3	17
211	Relation between defect generation, stress induced leakage current and soft breakdown in thin (<5) Tj ETQq1 1 ().784314 1.7	rgBT /Overlo
212	Modeling the conduction characteristics of broken down gate oxides in MOS structures. Microelectronics Reliability, 2000, 40, 1599-1603.	1.7	15
213	Conduction properties of breakdown paths in ultrathin gate oxides. Microelectronics Reliability, 2000, 40, 687-690.	1.7	7
214	Soft breakdown conduction in ultrathin (3-5 nm) gate dielectrics. IEEE Transactions on Electron Devices, 2000, 47, 82-89.	3.0	103
215	Analysis of the degradation and breakdown of thin SiO/sub 2/ films under static and dynamic tests using a two-step stress procedure. IEEE Transactions on Electron Devices, 2000, 47, 2138-2145.	3.0	13
216	Comment on "Quantum Wave Packet Dynamics with Trajectories― Physical Review Letters, 2000, 85, 894-894.	7.8	9

#	Article	IF	Citations
217	Monitoring the degradation that causes the breakdown of ultrathin (<5 nm) SiO ₂ gate oxides. IEEE Electron Device Letters, 2000, 21, 251-253.	3.9	20
218	Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms? IEEE Electron Device Letters, 2000, 21, 167-169.	3.9	65
219	Failure physics of ultra-thin SiO2gate oxides near their scaling limit. Semiconductor Science and Technology, 2000, 15, 445-454.	2.0	20
220	Simulation of Mesoscopic Devices with Bohm Trajectories and Wavepackets., 2000,, 327-328.		0
221	Improving Electron Transport Simulation in Mesoscopic Systems by Coupling a Classical Monte Carlo Algorithm to a Wigner Function Solver. , 2000, , 330-331.		0
222	Towards the Monte Carlo simulation of resonant tunnelling diodes using time-dependent wavepackets and Bohm trajectories. Semiconductor Science and Technology, 1999, 14, 532-542.	2.0	12
223	Modeling the breakdown spots in silicon dioxide films as point contacts. Applied Physics Letters, 1999, 75, 959-961.	3.3	41
224	Coupling between the Liouville equation and a classical Monte Carlo solver for the simulation of electron transport in resonant tunneling diodes. Solid-State Electronics, 1999, 43, 315-323.	1.4	5
225	Detection and fitting of the soft breakdown failure mode in MOS structures. Solid-State Electronics, 1999, 43, 1801-1805.	1.4	24
226	Switching events in the soft breakdown l–t characteristic of ultra-thin SiO2 layers. Microelectronics Reliability, 1999, 39, 161-164.	1.7	11
227	A common framework for soft and hard breakdown in ultrathin oxides based on the theory of point contact conduction. Microelectronic Engineering, 1999, 48, 171-174.	2.4	9
228	Model-independent determination of the degradation dynamics of thin SiO2 films. Microelectronics Reliability, 1999, 39, 891-895.	1.7	0
229	A function-fit model for the soft breakdown failure mode. IEEE Electron Device Letters, 1999, 20, 265-267.	3.9	76
230	A new approach to analyze the degradation and breakdown of thin SiO2 films under static and dynamic electrical stress. IEEE Electron Device Letters, 1999, 20, 317-319.	3.9	11
231	Quantum Simulation of Resonant Tunneling Diodes: a Reliable Approach Based on the Wigner Function Method. Japanese Journal of Applied Physics, 1999, 38, 2669-2674.	1.5	1
232	Soft Breakdown in Ultrathin SiO2Layers: the Conduction Problem from a New Point of View. Japanese Journal of Applied Physics, 1999, 38, 2223-2226.	1.5	20
233	Evaluation of the Degradation Dynamics of Thin Silicon Dioxide Films Using Model-Independent Procedures. Materials Research Society Symposia Proceedings, 1999, 592, 7.	0.1	0
234	Mesoscopic Transport in Broken Down Ultrathin SiO2 Films. Materials Research Society Symposia Proceedings, 1999, 592, 113.	0.1	0

#	Article	IF	CITATIONS
235	Trapped charge distributions in thin (10 nm) SiO/sub 2/ films subjected to static and dynamic stresses. IEEE Transactions on Electron Devices, 1998, 45, 881-888.	3.0	33
236	Two-step stress method for the dynamic testing of very thin (8 nm) SiO2 films. Microelectronics Reliability, 1998, 38, 1127-1131.	1.7	1
237	Quantum Monte Carlo simulation of resonant tunneling diodes based on the Wigner distribution function formalism. Applied Physics Letters, 1998, 73, 3539-3541.	3.3	14
238	Bohm trajectories for the Monte Carlo simulation of quantum-based devices. Applied Physics Letters, 1998, 72, 806-808.	3.3	16
239	Effects of spacer layers on the Wigner function simulation of resonant tunneling diodes. Journal of Applied Physics, 1998, 83, 8057-8061.	2.5	11
240	Soft breakdown fluctuation events in ultrathin SiO2 layers. Applied Physics Letters, 1998, 73, 490-492.	3.3	60
241	Switching behavior of the soft breakdown conduction characteristic in ultra-thin (<5 nm) oxide MOS capacitors., 1998,,.		14
242	Hydrogen desorption in SiGe films: A diffusion limited process. Applied Physics Letters, 1997, 70, 3287-3289.	3.3	7
243	Bohm trajectories for the modeling of tunneling devices. Microelectronic Engineering, 1997, 36, 125-128.	2.4	2
244	Analysis of the evolution of the trapped charge distributions in 10nm SiO2 films during DC and bipolar dynamic stress. Microelectronics Reliability, 1997, 37, 1517-1520.	1.7	5
245	Quantum Monte Carlo Simulation of Tunneling Devices Using Bohm Trajectories. Physica Status Solidi (B): Basic Research, 1997, 204, 404-407.	1.5	1
246	Degradation and breakdown of thin silicon dioxide films under dynamic electrical stress. IEEE Transactions on Electron Devices, 1996, 43, 2215-2226.	3.0	27
247	Bohm trajectories and their potential use for the Monte Carlo simulation of resonant tunnelling diodes. Applied Surface Science, 1996, 102, 255-258.	6.1	0
248	Breakdown of thin gate silicon dioxide filmsâ€"A review. Microelectronics Reliability, 1996, 36, 871-905.	1.7	19
249	Oscillatory bohm trajectories in resonant tunneling structures. Solid State Communications, 1996, 99, 123-128.	1.9	16
250	Comparison between the relaxation time approximation and the Boltzmann collision operator for simulation of dissipative electron transport in resonant tunnelling diodes. Solid-State Electronics, 1996, 39, 1795-1804.	1.4	10
251	Implications of the noncrossing property of Bohm trajectories in one-dimensional tunneling configurations. Physical Review A, 1996, 54, 2594-2604.	2.5	53
252	Relation between degradation and breakdown of thin SiO2 films under AC stress conditions. Microelectronic Engineering, 1995, 28, 321-324.	2.4	6

#	Article	IF	CITATIONS
253	High field dynamic stress of thin SiO2 films. Microelectronics Reliability, 1995, 35, 539-553.	1.7	4
254	Frequency dependence of degradation and breakdown of thin SiO ₂ films. Quality and Reliability Engineering International, 1995, 11, 257-261.	2.3	1
255	Stationary modeling of twoâ€dimensional states in resonant tunneling devices. Journal of Applied Physics, 1995, 78, 2135-2137.	2.5	7
256	Quantum effects in accumulated MOS thin dielectric structures. Microelectronics Journal, 1994, 25, 523-531.	2.0	5
257	Reversible dielectric breakdown of thin gate oxides in MOS devices. Microelectronics Reliability, 1993, 33, 1031-1039.	1.7	11
258	Advanced electrical-level modeling of EEPROM cells. IEEE Transactions on Electron Devices, 1993, 40, 951-957.	3.0	27
259	Temperature dependence of Fowler-Nordheim injection from accumulated n-type silicon into silicon dioxide. IEEE Transactions on Electron Devices, 1993, 40, 1017-1019.	3.0	23
260	Characterization of SiO/sub 2 / dielectric breakdown for reliability simulation. IEEE Transactions on Electron Devices, 1993 , 40 , $1662-1668$.	3.0	17
261	Limitations of oxide breakdown accelerated testing for reliability simulation. Quality and Reliability Engineering International, 1993, 9, 333-336.	2.3	1
262	Exploratory observations of postâ€breakdown conduction in polycrystallineâ€silicon and metalâ€gated thinâ€oxide metalâ€oxideâ€semiconductor capacitors. Journal of Applied Physics, 1993, 73, 205-215.	2.5	95
263	Quantum-mechanical modeling of accumulation layers in MOS structure. IEEE Transactions on Electron Devices, 1992, 39, 1732-1739.	3.0	103
264	Selfâ€consistent solution of the Poisson and Schrödinger equations in accumulated semiconductorâ€insulator interfaces. Journal of Applied Physics, 1991, 70, 337-345.	2.5	82
265	After-breakdown conduction through ultrathin SiO2 films in metal/insulator/semiconductor structures. Thin Solid Films, 1991, 196, 11-27.	1.8	5
266	The statistical distribution of breakdown from multiple breakdown events in one sample. Journal Physics D: Applied Physics, 1991, 24, 407-414.	2.8	7
267	Determination of the Si-SiO/sub 2/ barrier height from the Fowler-Nordheim plot. IEEE Electron Device Letters, 1991, 12, 620-622.	3.9	31
268	Simple STM theory. Vacuum, 1990, 41, 379-381.	3.5	0
269	On the breakdown statistics of very thin SiO2 films. Thin Solid Films, 1990, 185, 347-362.	1.8	238
270	On the dissipation of energy by hot electrons in SiO2. Journal Physics D: Applied Physics, 1990, 23, 1576-1581.	2.8	13

#	Article	IF	Citations
271	Nondestructive multiple breakdown events in very thin SiO2films. Applied Physics Letters, 1989, 55, 128-130.	3.3	20
272	Breakdown of SiO2 films in VLSI MOS structures. Vacuum, 1989, 39, 765-769.	3.5	0
273	On the oxide interface micro-roughness in MOS devices. Vacuum, 1989, 39, 771-774.	3.5	0
274	Gate oxide breakdown statistics in wearout tests of metal-oxide-semiconductor structures. Microelectronics Journal, 1989, 20, 27-39.	2.0	3
275	Degradation and Breakdown of Gate Oxides in VLSI Devices. Physica Status Solidi A, 1989, 111, 675-685.	1.7	44
276	The Thermal Growth of Very Thin SiO2 Films A Diffusion-Controlled Process. Physica Status Solidi A, 1989, 114, 167-175.	1.7	2
277	On the SiOx transition layer in abrupt Si-SiO2 chemical interface in MOS structures. Surface Science, 1989, 208, 463-472.	1.9	10
278	Characterization of the metal-SiO2-Si interface roughness by electrical methods. Surface Science, 1987, 189-190, 346-352.	1.9	9
279	Transient simulation of the ERASE cycle of floating gate EEPROMs. , 0, , .		11
280	Point contact conduction at the oxide breakdown of MOS devices. , 0, , .		40
281	Impact of MOS technological parameters on the detection and modeling of the soft breakdown conduction. , 0 , , .		1
282	Post soft breakdown conduction in SiO/sub 2/ gate oxides. , 0, , .		18
283	New global insight in ultra-thin oxide reliability using accurate experimental methodology and theoretical modeling. , 0, , .		0
284	Analytic modeling of leakage current through multiple breakdown paths in SiO/sub 2/ films. , 0, , .		34
285	Understanding soft and hard breakdown statistics, prevalence ratios and energy dissipation during breakdown runaway. , 0, , .		25
286	A novel approach to quantum point contact for post soft breakdown conduction. , 0, , .		17
287	Weibull slopes, critical defect density, and the validity of stress-induced-leakage current (SILC) measurements. , 0, , .		8
288	Statistics of successive breakdown events for ultra-thin gate oxides. , 0, , .		27

#	Article	IF	CITATIONS
289	Polarity-dependent oxide breakdown of NFET devices for ultra-thin gate oxide. , 0, , .		17
290	Critical assessment of soft breakdown stability time and the implementation of new post-breakdown methodology for ultra-thin gate oxides [MOSFET]. , 0, , .		15
291	Compact modeling of nanoscale MOSFETs in the ballistic limit. , 0, , .		2
292	Impact of stress induced leakage current on power-consumption in ultra-thin gate oxides. , 0, , .		4
293	Quanturn instantaneous current: application to nanoMOSFETs switched at very-high frequency. , 0, , .		O
294	Physics-based model of the surrounding-gate MOSFET., 0, , .		2
295	A comprehensive investigation of gate oxide breakdown of P+Poly/PFETs under inversion mode. , 0, , .		13