Guido Boidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232677/publications.pdf

Version: 2024-02-01

		1478505	1372567	
13	160	6	10	
papers	citations	h-index	g-index	
14	14	14	100	
all docs	docs citations	times ranked	citing authors	
			_	
an does	does citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Lifetime assessment of porous journal bearings using joint time-frequency analysis of real-time sensor data. Tribology International, 2022, 169, 107488.	5.9	5
2	The use of Powder Metallurgy for promoting friction reduction under sliding-rolling lubricated conditions. Tribology International, 2021, 157, 106892.	5.9	5
3	Effect of sintering densification on micro-scale mechanical and tribological behaviour of niobium carbide. Wear, 2021, 482-483, 203958.	3.1	6
4	Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts. Friction, 2021, 9, 1227-1241.	6.4	31
5	Effect of laser surface texturing on friction behaviour in elastohydrodynamically lubricated point contacts under different sliding-rolling conditions. Tribology International, 2020, 149, 105613.	5.9	43
6	Identification of a Material–Lubricant Pairing and Operating Conditions That Lead to the Failure of Porous Journal Bearing Systems. Tribology Letters, 2020, 68, 1.	2.6	4
7	Using Machine Learning Radial Basis Function (RBF) Method for Predicting Lubricated Friction on Textured and Porous Surfaces. Surface Topography: Metrology and Properties, 2020, 8, 044002.	1.6	29
8	Porosity Effect of Sintered Steel on the Frictional Performance of Conformal and Nonconformal Lubricated Contacts. Tribology Transactions, 2019, 62, 1029-1040.	2.0	8
9	Wear and friction performance under lubricated reciprocating tests of steel powder mixtures sintered by Spark Plasma Sintering. Tribology International, 2018, 121, 139-147.	5.9	12
10	Numerical analyses of stress induced damage during a reciprocating lubricated test of fecmo sps sintered alloy. Tribology International, 2017, 113, 443-447.	5.9	10
11	Tribological Evaluation of Sintered and Conventional Gear Materials. , 2017, , .		4
12	Multiscale effect of thermomechanical loads on the NbC-Steel microstructure obtained by SPS. , 0, , .		0
13	Tribological Performance of Random Sinter Pores vs. Deterministic Laser Surface Textures: An Experimental and Machine Learning Approach. , 0, , .		1