Alison Gail Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723260/publications.pdf

Version: 2024-02-01

165 papers 14,364 citations

20817 60 h-index 22166 113 g-index

180 all docs

180 docs citations

180 times ranked 14941 citing authors

#	Article	IF	CITATIONS
1	CpPosNeg: A positiveâ€negative selection strategy allowing multiple cycles of markerâ€free engineering of the Chlamydomonas plastome. Biotechnology Journal, 2022, 17, e2200088.	3.5	6
2	Exploring the onset of <scp>B₁₂</scp> â€based mutualisms using a recently evolved <scp><i>Chlamydomonas</i></scp> auxotroph and <scp>B₁₂</scp> â€producing bacteria. Environmental Microbiology, 2022, 24, 3134-3147.	3.8	14
3	Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. New Phytologist, 2022, 235, 1853-1867.	7.3	8
4	Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS ONE, 2021, 16, e0251643.	2.5	5
5	Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56, 102293.	4.6	23
6	Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites. Frontiers in Plant Science, 2021, 12, 671981.	3.6	13
7	Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. Journal of Applied Phycology, 2021, 33, 2805-2815.	2.8	20
8	Exploring the Impact of Terminators on Transgene Expression in Chlamydomonas reinhardtii with a Synthetic Biology Approach. Life, 2021, 11, 964.	2.4	5
9	The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. Frontiers in Plant Science, 2021, 12, 708370.	3.6	15
10	A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 2020, 369, .	12.6	120
11	Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nature Communications, 2020, 11, 2527.	12.8	75
12	Development of Novel Riboswitches for Synthetic Biology in the Green Alga Chlamydomonas. ACS Synthetic Biology, 2020, 9, 1406-1417.	3.8	37
13	Responses of a Newly Evolved Auxotroph of Chlamydomonas to B ₁₂ Deprivation. Plant Physiology, 2020, 183, 167-178.	4.8	11
14	Bionic 3D printed corals. Nature Communications, 2020, 11, 1748.	12.8	78
15	Overexpression of chloroplast-targeted ferrochelatase 1 results in a <i>genomes uncoupled</i> chloroplast-to-nucleus retrograde signalling phenotype. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190401.	4.0	6
16	Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytologist, 2019, 222, 1242-1255.	7.3	60
17	Effects of Copper and pH on the Growth and Physiology of Desmodesmus sp. AARLG074. Metabolites, 2019, 9, 84.	2.9	12
18	PPR proteins – orchestrators of organelle RNA metabolism. Physiologia Plantarum, 2019, 166, 451-459.	5.2	48

#	Article	IF	CITATIONS
19	Cross-exchange of B-vitamins underpins a mutualistic interaction between <i>Ostreococcus tauri</i> and <i>Dinoroseobacter shibae</i> . ISME Journal, 2019, 13, 334-345.	9.8	83
20	Microbial mutualism at a distance: The role of geometry in diffusive exchanges. Physical Review E, 2018, 97, 022411.	2.1	13
21	Quantitative proteomics of a B ₁₂ â€dependent alga grown in coculture with bacteria reveals metabolic tradeoffs required for mutualism. New Phytologist, 2018, 217, 599-612.	7.3	29
22	Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti. Journal of Applied Phycology, 2018, 30, 995-1003.	2.8	6
23	Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga <i>Chlamydomonas reinhardtii</i> . ACS Synthetic Biology, 2018, 7, 2074-2086.	3.8	225
24	Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
25	Growth of microalgae using nitrate-rich brine wash from the water industry. Algal Research, 2018, 33, 91-98.	4.6	14
26	Synthetic biology approaches for the production of plant metabolites in unicellular organisms. Journal of Experimental Botany, 2017, 68, 4057-4074.	4.8	42
27	The Algal Revolution. Trends in Plant Science, 2017, 22, 726-738.	8.8	73
28	Seedlings Lacking the PTM Protein Do Not Show a <i>genomes uncoupled (gun)</i> Mutant Phenotype. Plant Physiology, 2017, 174, 21-26.	4.8	42
29	The biochemical properties of the two <i>Arabidopsis thaliana</i> isochorismate synthases. Biochemical Journal, 2017, 474, 1579-1590.	3.7	23
30	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216, 670-681.	7.3	25
31	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
32	Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression. New Phytologist, 2017, 213, 1168-1180.	7. 3	56
33	Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 2017, 29, 949-982.	2.8	984
34	How mutualisms arise in phytoplankton communities: building ecoâ€evolutionary principles for aquatic microbes. Ecology Letters, 2016, 19, 810-822.	6.4	75
35	NO-Mediated [Ca ²⁺] _{cyt} Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis. Plant Physiology, 2016, 171, 623-631.	4.8	29
36	Role of riboswitches in gene regulation and their potential for algal biotechnology. Journal of Phycology, 2016, 52, 320-328.	2.3	13

#	Article	IF	CITATIONS
37	Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor. Royal Society Open Science, 2016, 3, 160249.	2.4	39
38	Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. Current Biology, 2016, 26, 999-1008.	3.9	220
39	Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic Chlorophyll Fluorescence for the Identification of Fast Growing Strains. Analytical Chemistry, 2016, 88, 10445-10451.	6.5	42
40	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	4.8	53
41	Towards developing algal synthetic biology. Biochemical Society Transactions, 2016, 44, 716-722.	3.4	51
42	Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnology Journal, 2016, 14, 22-28.	8.3	37
43	Applications of Microdroplet Technology for Algal Biotechnology. Current Biotechnology, 2016, 5, 109-117.	0.4	12
44	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
45	High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform. Journal of the Royal Society Interface, 2015, 12, 20150216.	3.4	66
46	Establishing <i>Chlamydomonas reinhardtii</i> as an industrial biotechnology host. Plant Journal, 2015, 82, 532-546.	5.7	167
47	Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. ISME Journal, 2015, 9, 1446-1455.	9.8	65
48	Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13591-13596.	7.1	159
49	Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion in Plant Biology, 2015, 26, 147-153.	7.1	179
50	Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices. Algal Research, 2015, 12, 91-98.	4.6	25
51	The hydroxyl radical in plants: from seed to seed. Journal of Experimental Botany, 2015, 66, 37-46.	4.8	131
52	Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME Journal, 2014, 8, 1418-1427.	9.8	156
53	Phycobilisome-Deficient Strains of <i>Synechocystis</i> sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity Â. Plant Physiology, 2014, 165, 705-714.	4.8	66
54	Unraveling Vitamin B ₁₂ -Responsive Gene Regulation in Algae. Plant Physiology, 2014, 165, 388-397.	4.8	76

#	Article	IF	Citations
55	Threonine 57 is required for the post-translational activation of <i>Escherichia coli </i> aspartate l̂±-decarboxylase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1166-1172.	2.5	5
56	Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technology, 2014, 157, 293-304.	9.6	97
57	Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 2014, 163, 343-355.	9.6	144
58	Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends in Biotechnology, 2014, 32, 617-626.	9.3	53
59	Assessing the environmental sustainability of biofuels. Trends in Plant Science, 2014, 19, 615-618.	8.8	42
60	Triacylglyceride Production and Autophagous Responses in Chlamydomonas reinhardtii Depend on Resource Allocation and Carbon Source. Eukaryotic Cell, 2014, 13, 392-400.	3.4	58
61	An Engineered Community Approach for Industrial Cultivation of Microalgae. Industrial Biotechnology, 2014, 10, 184-190.	0.8	56
62	Validating Fragment-Based Drug Discovery for Biological RNAs: Lead Fragments Bind and Remodel the TPP Riboswitch Specifically. Chemistry and Biology, 2014, 21, 591-595.	6.0	79
63	Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy and Environmental Science, 2013, 6, 2682.	30.8	61
64	Widespread decay of vitamin-related pathways: coincidence or consequence?. Trends in Genetics, 2013, 29, 469-478.	6.7	53
65	Thylakoid Terminal Oxidases Are Essential for the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 to Survive Rapidly Changing Light Intensities Â. Plant Physiology, 2013, 162, 484-495.	4.8	97
66	A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Frontiers in Plant Science, 2013, 4, 14.	3.6	120
67	A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana. PLoS ONE, 2013, 8, e83066.	2.5	70
68	Analysis of <i>Chlamydomonas</i> thiamin metabolism in vivo reveals riboswitch plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14622-14627.	7.1	42
69	Regulation of RNA-Dependent RNA Polymerase 1 and Isochorismate Synthase Gene Expression in Arabidopsis. PLoS ONE, 2013, 8, e66530.	2.5	85
70	Characterization of the evolutionarily conserved iron–sulfur cluster of sirohydrochlorin ferrochelatase from <i>Arabidopsis thaliana</i> . Biochemical Journal, 2012, 444, 227-237.	3.7	19
71	Synthetic ecology – A way forward for sustainable algal biofuel production?. Journal of Biotechnology, 2012, 162, 163-169.	3.8	123
72	A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 2012, 162, 28-39.	3.8	109

#	Article	IF	CITATIONS
73	Treatment of Phaeodactylum tricornutum cells with papain facilitates lipid extraction. Journal of Biotechnology, 2012, 162, 40-49.	3.8	28
74	Probing riboswitch–ligand interactions using thiamine pyrophosphate analogues. Organic and Biomolecular Chemistry, 2012, 10, 5924.	2.8	29
75	ACCELERATED CELL DEATH 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant Journal, 2012, 69, 589-600.	5.7	47
76	Structure of <i>Escherichia coli </i> aspartate α-decarboxylase Asn72Ala: probing the role of Asn72 in pyruvoyl cofactor formation. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 414-417.	0.7	5
77	Mutualistic interactions between vitamin B ₁₂ â€dependent algae and heterotrophic bacteria exhibit regulation. Environmental Microbiology, 2012, 14, 1466-1476.	3.8	322
78	Fragment screening against the thiamine pyrophosphate riboswitchthim. Chemical Science, 2011, 2, 157-165.	7.4	46
79	Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochemical Society Transactions, 2011, 39, 652-657.	3.4	20
80	Do Red and Green Make Brown?: Perspectives on Plastid Acquisitions within Chromalveolates. Eukaryotic Cell, 2011, 10, 856-868.	3.4	114
81	Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Scientific Reports, $2011, 1, 187$.	3.3	124
82	Quantitative tracking of the growth of individual algal cells in microdroplet compartments. Integrative Biology (United Kingdom), 2011, 3, 1043.	1.3	84
83	Pantothenate Biosynthesis in Higher Plants. Advances in Botanical Research, 2011, , 203-255.	1.1	20
84	Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy and Environmental Science, 2011, 4, 4699.	30.8	227
85	Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy and Environmental Science, 2011, 4, 4690.	30.8	141
86	NOX or not? Evidence for algal NADPH oxidases. Trends in Plant Science, 2011, 16, 579-581.	8.8	31
87	Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes. Molecular Biology and Evolution, 2011, 28, 2921-2933.	8.9	246
88	Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Molecular Plant-Microbe Interactions, 2010, 23, 835-845.	2.6	169
89	Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 2010, 21, 277-286.	6.6	976
90	Influence of nitrogen-limitation regime on the production by <i>Chlorella vulgaris</i> of lipids for biodiesel feedstocks. Biofuels, 2010, 1, 47-58.	2.4	139

#	Article	IF	CITATIONS
91	Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy & Energy & 2010, 24, 4062-4077.	5.1	484
92	Substrate-Induced Closing of the Active Site Revealed by the Crystal Structure of Pantothenate Synthetase from <i>Staphylococcus aureus</i>). Biochemistry, 2010, 49, 6400-6410.	2.5	10
93	The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science, 2010, 15, 488-498.	8.8	287
94	Porphyra: Complex Life Histories in a Harsh Environment: P. umbilicalis, an Intertidal Red Alga for Genomic Analysis. Cellular Origin and Life in Extreme Habitats, 2010, , 129-148.	0.3	21
95	A Fragment-Based Approach to Identifying Ligands for Riboswitches. ACS Chemical Biology, 2010, 5, 355-358.	3.4	51
96	Chlorophyll and folate: intimate link revealed by drug treatment. New Phytologist, 2009, 182, 3-5.	7.3	6
97	Regulation of Tetrapyrrole Synthesis in Higher Plants. , 2009, , 250-262.		2
98	Transformation of Uroporphyrinogen III into Protohaem. , 2009, , 74-88.		7
99	Towards engineering increased pantothenate (vitamin B5) levels in plants. Plant Molecular Biology, 2008, 68, 493-503.	3.9	18
100	Tetrapyrrole profiling in <i>Arabidopsis</i> seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15178-15183.	7.1	243
101	Identification and characterization of the <i> Arabidopsis < /i > gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Biochemical Journal, 2008, 410, 291-299.</i>	3.7	14
102	A Robust Method for Determination of Chlorophyll Intermediates by Tandem Mass Spectrometry. , 2008, , $1215-1222$.		6
103	Crystal Structure of Escherichia coli Ketopantoate Reductase in a Ternary Complex with NADP+ and Pantoate Bound. Journal of Biological Chemistry, 2007, 282, 8487-8497.	3.4	39
104	Thiamine biosynthesis in algae is regulated by riboswitches. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20770-20775.	7.1	214
105	Editorial: Vitamins and cofactorsâ€"chemistry, biochemistry and biology. Natural Product Reports, 2007, 24, 923.	10.3	5
106	Evolution of enzymes and pathways for the biosynthesis of cofactors. Natural Product Reports, 2007, 24, 972.	10.3	62
107	Iron–sulfur proteins as initiators of radical chemistry. Natural Product Reports, 2007, 24, 1027.	10.3	36
108	Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels. Natural Product Reports, 2007, 24, 949.	10.3	42

#	Article	lF	Citations
109	Metal and cofactor insertion. Natural Product Reports, 2007, 24, 963.	10.3	38
110	Elucidating biosynthetic pathways for vitamins and cofactors. Natural Product Reports, 2007, 24, 988.	10.3	98
111	pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 171-178.	2.5	9
112	Plants need their vitamins too. Current Opinion in Plant Biology, 2007, 10, 266-275.	7.1	122
113	Probing Hot Spots at Proteinâ°Ligand Binding Sites:  A Fragment-Based Approach Using Biophysical Methods. Journal of Medicinal Chemistry, 2006, 49, 4992-5000.	6.4	140
114	Pantothenate biosynthesis in higher plants: advances and challenges. Physiologia Plantarum, 2006, 126, 319-329.	5.2	27
115	The design and synthesis of inhibitors of pantothenate synthetase. Organic and Biomolecular Chemistry, 2006, 4, 3598.	2.8	44
116	Algae Need Their Vitamins. Eukaryotic Cell, 2006, 5, 1175-1183.	3.4	385
117	Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 2005, 438, 90-93.	27.8	1,258
118	Biosynthesis of Pantothenate. ChemInform, 2005, 36, no.	0.0	0
119	Identification and Characterization of the Terminal Enzyme of Siroheme Biosynthesis from Arabidopsis thaliana. Journal of Biological Chemistry, 2005, 280, 4713-4721.	3.4	42
120	The Crystal Structure of Escherichia coli Ketopantoate Reductase with NADP+ Bound, Biochemistry, 2005, 44, 8930-8939.	2.5	34
121	Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 192-203.	2.4	30
122	Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants. Plant Journal, 2004, 37, 61-72.	5.7	64
123	Fidelity of targeting to chloroplasts is not affected by removal of the phosphorylation site from the transit peptide. FEBS Journal, 2004, 271, 509-516.	0.2	58
124	Biosynthesis of pantothenate. Natural Product Reports, 2004, 21, 695.	10.3	132
125	Functional identification of AtFao3, a membrane bound long chain alcohol oxidase inArabidopsis thaliana. FEBS Letters, 2004, 574, 62-68.	2.8	15
126	Structural constraints on protein self-processing in L-aspartate-Â-decarboxylase. EMBO Journal, 2003, 22, 6193-6204.	7.8	56

#	Article	IF	CITATIONS
127	Structure of E. coli Ketopantoate Hydroxymethyl Transferase Complexed with Ketopantoate and Mg2+, Solved by Locating 160 Selenomethionine Sites. Structure, 2003, 11, 985-996.	3.3	49
128	Green or red: what stops the traffic in the tetrapyrrole pathway?. Trends in Plant Science, 2003, 8, 224-230.	8.8	183
129	Rapid screening by MALDI-TOF mass spectrometry to probe binding specificity at enzyme active sitesElectronic supplementary information (ESI) available: details of suppliers of chemicals used in MALDI-TOF mass spectrometry screening assay. See http://www.rsc.org/suppdata/cc/b3/b308182f/. Chemical Communications, 2003, . 2416.	4.1	13
130	Comparative Analysis of the Escherichia coli Ketopantoate Hydroxymethyltransferase Crystal Structure Confirms that It Is a Member of the $(\hat{l}^2\hat{l}_\pm)$ 8 Phosphoenolpyruvate/Pyruvate Superfamily. Journal of Bacteriology, 2003, 185, 4163-4171.	2.2	8
131	Two Types of Ferrochelatase in Photosynthetic and Nonphotosynthetic Tissues of Cucumber. Journal of Biological Chemistry, 2002, 277, 4731-4737.	3.4	7 5
132	Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochemical Journal, 2002, 362, 423.	3.7	53
133	Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochemical Journal, 2002, 362, 423-432.	3.7	66
134	Isolated Plant Mitochondria Import Chloroplast Precursor Proteinsin Vitro with the Same Efficiency as Chloroplasts. Journal of Biological Chemistry, 2002, 277, 5562-5569.	3.4	67
135	The origin of intermediate species of the genus Sorbus. Theoretical and Applied Genetics, 2002, 105, 953-963.	3.6	66
136	Molecular characterisation of coproporphyrinogen oxidase from Glycine max and Arabidopsis thaliana. Plant Physiology and Biochemistry, 2002, 40, 289-298.	5.8	11
137	Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Molecular Biology, 2002, 50, 773-788.	3.9	52
138	Identification of Tyr58 as the proton donor in the aspartate- \hat{l}_{\pm} -decarboxylase reaction. Chemical Communications, 2001, , 1760-1761.	4.1	18
139	Crystal Structure ofEscherichia coliKetopantoate Reductase at 1.7 à Resolution and Insight into the Enzyme Mechanismâ€. Biochemistry, 2001, 40, 14493-14500.	2.5	54
140	The Crystal Structure of E. coli Pantothenate Synthetase Confirms It as a Member of the Cytidylyltransferase Superfamily. Structure, 2001, 9, 439-450.	3.3	70
141	The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from <i>Lotus japonicus</i> and <i>Oryza sativum</i> (rice). Biochemical Journal, 1999, 341, 669-678.	3.7	44
142	The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice). Biochemical Journal, 1999, 341, 669.	3.7	33
143	Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self–processing. Nature Structural Biology, 1998, 5, 289-293.	9.7	89
144	Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant Journal, 1998, 15, 531-541.	5.7	97

#	Article	IF	Citations
145	Multiple Genes Encoding the Conserved CCAAT-Box Transcription Factor Complex Are Expressed in Arabidopsis. Plant Physiology, 1998, 117, 1015-1022.	4.8	150
146	Evidence that the Plant Host Synthesizes the Heme Moiety of Leghemoglobin in Root Nodules 1. Plant Physiology, 1998, 116, 1259-1269.	4.8	32
147	Siroheme Biosynthesis in Higher Plants. Journal of Biological Chemistry, 1997, 272, 2744-2752.	3.4	52
148	A Single Precursor Protein for Ferrochelatase-I from Arabidopsis Is Imported in Vitro into Both Chloroplasts and Mitochondria. Journal of Biological Chemistry, 1997, 272, 27565-27571.	3.4	100
149	<i>Escherichia coli</i> <scp>l</scp> -aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochemical Journal, 1997, 323, 661-669.	3.7	83
150	Molecular Localisation of Ferrochelatase in Higher Plant Chloroplasts. FEBS Journal, 1997, 246, 32-37.	0.2	33
151	Subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in higher plants: an immunological investigation. Planta, 1996, 199, 557-64.	3.2	13
152	Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Molecular Biology, 1994, 24, 435-448.	3.9	32
153	Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Molecular Biology, 1994, 26, 863-872.	3.9	26
154	Evidence for the pathway to pantothenate in plants. Canadian Journal of Chemistry, 1994, 72, 261-263.	1.1	16
155	A novel calcium-binding protein from Euglena gracilis. Characterisation of a cDNA encoding a 74-kDa acidic-repeat protein targeted across the endoplasmic reticulum. FEBS Journal, 1992, 210, 721-727.	0.2	9
156	The complete nucleotide sequence of the intergenic spacer region of an rDNA operon from Brassica oleracea and its comparison with other crucifers. Plant Molecular Biology, 1991, 16, 1095-1098.	3.9	35
157	Use of a genomic clone for ribosomal RNA from Brassica oleracea in RFLP analysis of Brassica species. Plant Molecular Biology, 1991, 16, 685-688.	3.9	28
158	Pea chloroplast genes encoding a 4kDa polypeptide of photosystem I and a putative enzyme of C1 metabolism. Current Genetics, 1991, 19, 403-410.	1.7	26
159	An improved purification procedure for uroporphyrinogen III synthase from <i>Euglena gracilis</i> Biochemical Society Transactions, 1990, 18, 500-501.	3.4	1
160	Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. FEBS Journal, 1989, 184, 353-359.	0.2	87
161	Subcellular Localisation of Porphyrin Synthesis Enzymes in Pea and Arum., 1987,, 453-456.		0
162	Localization of the gene for P700 chlorophyll a protein in pea chloroplast DNA. Molecular Genetics and Genomics, 1984, 194, 471-476.	2.4	28

#	Article	IF	CITATIONS
163	Localization of the gene for the P700â€"chlorophyll a protein in chloroplast DNA from pea and wheat. Biochemical Society Transactions, 1984, 12, 272-273.	3.4	9
164	Investigation of the Mechanism of Action of a Chlorosis-Inducing Toxin Produced by Pseudomonas phaseolicola. Plant Physiology, 1982, 70, 932-938.	4.8	10
165	N-phosphoglutamate does not behave as an active component of the exotoxin of Pseudomonas phaseolicola, the causative agent of haloblight of beans. Physiological Plant Pathology, 1979, 15, 269-278.	1.4	6