Buddha Deka Boruah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Advances, 2019, 1, 2059-2085.	2.2	215
2	Photo-rechargeable zinc-ion batteries. Energy and Environmental Science, 2020, 13, 2414-2421.	15.6	135
3	Vanadium Dioxide Cathodes for Highâ€Rate Photoâ€Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100115.	10.2	127
4	Energy-Efficient Hydrogenated Zinc Oxide Nanoflakes for High-Performance Self-Powered Ultraviolet Photodetector. ACS Applied Materials & Interfaces, 2016, 8, 18182-18188.	4.0	111
5	Photo-rechargeable Zinc-Ion Capacitors using V ₂ O ₅ -Activated Carbon Electrodes. ACS Energy Letters, 2020, 5, 3132-3139.	8.8	106
6	Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride. Nano Letters, 2020, 20, 5967-5974.	4.5	106
7	Light Rechargeable Lithium-Ion Batteries Using V ₂ O ₅ Cathodes. Nano Letters, 2021, 21, 3527-3532.	4.5	99
8	Highly Dense ZnO Nanowires Grown on Graphene Foam for Ultraviolet Photodetection. ACS Applied Materials & Interfaces, 2015, 7, 10606-10611.	4.0	95
9	Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector. Nanotechnology, 2016, 27, 095205.	1.3	85
10	Few-layer graphene/ZnO nanowires based high performance UV photodetector. Nanotechnology, 2015, 26, 235703.	1.3	79
11	Molybdenum Disulfide–Zinc Oxide Photocathodes for Photo-Rechargeable Zinc-Ion Batteries. ACS Nano, 2021, 15, 16616-16624.	7.3	70
12	Flexible Array of Microsupercapacitor for Additive Energy Storage Performance Over a Large Area. ACS Applied Materials & Interfaces, 2018, 10, 15864-15872.	4.0	55
13	Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse. Nanoscale, 2018, 10, 3451-3459.	2.8	54
14	Synergistic effect in the heterostructure of ZnCo ₂ O ₄ and hydrogenated zinc oxide nanorods for high capacitive response. Nanoscale, 2017, 9, 9411-9420.	2.8	47
15	Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors. Nanoscale, 2017, 9, 4536-4543.	2.8	44
16	Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23199-23205.	5.2	41
17	Layered Assembly of Reduced Graphene Oxide and Vanadium Oxide Heterostructure Supercapacitor Electrodes with Larger Surface Area for Efficient Energy-Storage Performance. ACS Applied Energy Materials, 2018, 1, 1567-1574.	2.5	39
18	Effect of Magnetic Field on Photoresponse of Cobalt Integrated Zinc Oxide Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 4771-4780.	4.0	36

Buddha Deka Boruah

#	Article	IF	CITATIONS
19	Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Materials, 2019, 21, 219-239.	9.5	30
20	A flexible ternary oxide based solid-state supercapacitor with excellent rate capability. Journal of Materials Chemistry A, 2016, 4, 17552-17559.	5.2	28
21	Polyethylenimine mediated reduced graphene oxide based flexible paper for supercapacitor. Energy Storage Materials, 2016, 5, 103-110.	9.5	27
22	Recent advances in off-grid electrochemical capacitors. Energy Storage Materials, 2021, 34, 53-75.	9.5	26
23	Internal Asymmetric Tandem Supercapacitor for High Working Voltage along with Superior Rate Performance. ACS Energy Letters, 2017, 2, 1720-1728.	8.8	24
24	In Situ and Operando Analyses of Reaction Mechanisms in Vanadium Oxides for Liâ€, Naâ€, Znâ€, and Mgâ€lons Batteries. Advanced Materials Technologies, 2022, 7, 2100799.	3.0	24
25	ZnO quantum dots and graphene based heterostructure for excellent photoelastic and highly sensitive ultraviolet photodetector. RSC Advances, 2015, 5, 90838-90846.	1.7	23
26	Voltage Generation in Optically Sensitive Supercapacitor for Enhanced Performance. ACS Applied Energy Materials, 2019, 2, 278-286.	2.5	21
27	Photo-Rechargeable Li-Ion Batteries: Device Configurations, Mechanisms, and Materials. ACS Applied Energy Materials, 2022, 5, 7891-7912.	2.5	21
28	Conjugated assembly of colloidal zinc oxide quantum dots and multiwalled carbon nanotubes for an excellent photosensitive ultraviolet photodetector. Nanotechnology, 2016, 27, 355204.	1.3	19
29	Nickel hydroxide coated carbon nanoparticles mediated hybrid three-dimensional graphene foam assembly for supercapacitor. RSC Advances, 2016, 6, 36307-36313.	1.7	14
30	Photochargeâ€Enhanced Capacitive Response of a Supercapacitor. Energy Technology, 2017, 5, 1356-1363.	1.8	12
31	Zinc oxide quantum dots decorated carbon nanotubes for improved opto-electro-mechanical response. Sensors and Actuators A: Physical, 2017, 267, 351-359.	2.0	7
32	Capacitive behavior of carbon nanotube thin film induced by deformed ZnO microspheres. Nanotechnology, 2017, 28, 395101.	1.3	3
33	Thermo-mechanical behavior of graphene oxide hydrogel. Materials Research Express, 2017, 4, 025006.	0.8	2
34	Visibleâ€light Augmented Lithium Storage Capacity in a Ruthenium(II) Photosensitizer Conjugated with a dioneâ€catechol Redox Couple. Chemistry - A European Journal, 0, , .	1.7	2
35	Influence of charge traps in carbon nanodots on gas interaction. Nanotechnology, 2017, 28, 135206.	1.3	1