Matthew B Frieman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7232098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infectious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Exhaled Aerosols and Efficacy of Masks During Early Mild Infection. Clinical Infectious Diseases, 2022, 75, e241-e248.	5.8	89
2	Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Science Translational Medicine, 2022, 14, eabn7842.	12.4	92
3	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	12.4	57
4	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	28.9	40
5	Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature, 2022, 604, 134-140.	27.8	108
6	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
7	Host Cell Glycocalyx Remodeling Reveals SARS-CoV-2 Spike Protein Glycomic Binding Sites. Frontiers in Molecular Biosciences, 2022, 9, 799703.	3.5	11
8	Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses, 2022, 14, 667.	3.3	3
9	Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. Npj Vaccines, 2022, 7, .	6.0	8
10	SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature Communications, 2021, 12, 372.	12.8	369
11	Human Monoclonal Antibody Cocktail for the Treatment or Prophylaxis of Middle East Respiratory Syndrome Coronavirus. Journal of Infectious Diseases, 2021, , .	4.0	7
12	Development and deployment of COVID-19 vaccines for those most vulnerable. Science Translational Medicine, 2021, 13, .	12.4	60
13	Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: <i>In Vitro</i> Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega, 2021, 6, 7454-7468.	3.5	56
14	Binding and Neutralization Antibody Titers After a Single Vaccine Dose in Health Care Workers Previously Infected With SARS-CoV-2. JAMA - Journal of the American Medical Association, 2021, 325, 1467.	7.4	311
15	A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nature Biomedical Engineering, 2021, 5, 815-829.	22.5	228
16	SARS-CoV-2 vaccines for all but a single dose for COVID-19 survivors. EBioMedicine, 2021, 68, 103401.	6.1	58
17	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	9.7	137
18	Novel TLR4 adjuvant elicits protection against homologous and heterologous Influenza A infection. Vaccine, 2021, 39, 5205-5213.	3.8	9

#	Article	IF	CITATIONS
19	Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. Cell Reports Medicine, 2021, 2, 100405.	6.5	110
20	Viral RNA and infectious influenza virus on mobile phones of influenza patients in Hong Kong and the United States. Journal of Infectious Diseases, 2021, , .	4.0	5
21	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	13.3	237
22	Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nature Communications, 2021, 12, 6055.	12.8	215
23	Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. MBio, 2021, 12, e0334721.	4.1	45
24	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	12.4	4
25	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
26	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
27	The SKI complex is a broad-spectrum, host-directed antiviral drug target for coronaviruses, influenza, and filoviruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30687-30698.	7.1	22
28	Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. New England Journal of Medicine, 2020, 383, 2320-2332.	27.0	1,000
29	Coronavirus interactions with the cellular autophagy machinery. Autophagy, 2020, 16, 2131-2139.	9.1	113
30	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	12.8	43
31	Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 <i>In Vitro</i> and SARS-CoV <i>In Vivo</i> . Journal of Virology, 2020, 94, .	3.4	180
32	NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine, 2020, 38, 7892-7896.	3.8	200
33	Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano, 2020, 14, 7617-7627.	14.6	609
34	Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369, 1010-1014.	12.6	1,140
35	The continued epidemic threat of SARS-CoV-2 and implications for the future of global public health. Current Opinion in Virology, 2020, 40, 37-40.	5.4	17
36	Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature Nanotechnology, 2020, 15, 247-249.	31.5	250

3

#	Article	IF	CITATIONS
37	COVID-19: Knowns, Unknowns, and Questions. MSphere, 2020, 5, .	2.9	124
38	Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. Journal of Virology, 2020, 94, .	3.4	1
39	The SKI complex is a broad-spectrum antiviral drug target. Access Microbiology, 2020, 2, .	0.5	0
40	Using Yeast to Identify Coronavirus–Host Protein Interactions. Methods in Molecular Biology, 2020, 2203, 205-221.	0.9	0
41	A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication. Journal of Virology, 2019, 93, .	3.4	18
42	Bats and Coronaviruses. Viruses, 2019, 11, 41.	3.3	357
43	Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight, 2019, 4, .	5.0	267
44	Monocyte DPP4 Expression in Human Atherosclerosis Is Associated With Obesity and Dyslipidemia. Diabetes Care, 2018, 41, e1-e3.	8.6	9
45	Respiratory Viruses. , 2018, , .		8
46	Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. Journal of General Virology, 2018, 99, 619-630.	2.9	130
47	MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS ONE, 2018, 13, e0194868.	2.5	93
48	MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine, 2017, 35, 1586-1589.	3.8	78
49	The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Research, 2017, 143, 142-150.	4.1	152
50	Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2017, 91, .	3.4	85
51	Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs, 2017, 77, 1935-1966.	10.9	156
52	One-Health: a Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus. Journal of Virology, 2017, 91, .	3.4	69
53	CD8 ⁺ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. Journal of Virology, 2017, 91, .	3.4	52
54	Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion. Journal of Virology, 2016, 90, 8924-8933.	3.4	229

#	Article	IF	CITATIONS
55	A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses. MSystems, 2016, 1, .	3.8	28
56	Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Science Translational Medicine, 2016, 8, 326ra21.	12.4	102
57	Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genetics, 2015, 11, e1005504.	3.5	137
58	Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clinical Immunology, 2015, 157, 228-238.	3.2	106
59	Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Molecular Immunology, 2015, 65, 1-16.	2.2	82
60	Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8738-8743.	7.1	196
61	The Global Virus Network: Challenging chikungunya. Antiviral Research, 2015, 120, 147-152.	4.1	31
62	SINC, a type III secreted protein of <i>Chlamydia psittaci,</i> targets the inner nuclear membrane of infected cells and uninfected neighbors. Molecular Biology of the Cell, 2015, 26, 1918-1934.	2.1	64
63	Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference. Journal of Virology, 2015, 89, 11820-11833.	3.4	133
64	Screening of FDA-Approved Drugs for Treatment of Emerging Pathogens. ACS Infectious Diseases, 2015, 1, 401-402.	3.8	12
65	Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1088-1099.	3.2	344
66	Growth and Quantification of MERSâ€CoV Infection. Current Protocols in Microbiology, 2015, 37, 15E.2.1-9.	6.5	59
67	Deficiency of Melanoma Differentiation–associated Protein 5 Results in Exacerbated Chronic Postviral Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 437-448.	5.6	18
68	Foreword. Virus Research, 2014, 194, 1-2.	2.2	0
69	The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virology Journal, 2014, 11, 209.	3.4	58
70	Coronaviruses: Important Emerging Human Pathogens. Journal of Virology, 2014, 88, 5209-5212.	3.4	170
71	Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014, 32, 3169-3174.	3.8	265
72	The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. Journal of General Virology, 2014, 95, 874-882.	2.9	99

#	Article	IF	CITATIONS
73	Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 4885-4893.	3.2	564
74	Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. Journal of General Virology, 2014, 95, 408-412.	2.9	111
75	Treating MERS-CoV during an outbreak. Lancet Infectious Diseases, The, 2014, 14, 1030-1031.	9.1	3
76	Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses. Antimicrobial Agents and Chemotherapy, 2014, 58, 4894-4898.	3.2	96
77	Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. Journal of General Virology, 2014, 95, 571-577.	2.9	191
78	Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing. MBio, 2014, 5, e01360-14.	4.1	89
79	The art of war: battles between virus and host. Current Opinion in Virology, 2014, 6, 76-77.	5.4	2
80	NKT Cell Responses to B Cell Lymphoma. Medical Sciences (Basel, Switzerland), 2014, 2, 82-97.	2.9	15
81	Emergence of the Middle East Respiratory Syndrome Coronavirus. PLoS Pathogens, 2013, 9, e1003595.	4.7	43
82	Molecular Determinants of Severe Acute Respiratory Syndrome Coronavirus Pathogenesis and Virulence in Young and Aged Mouse Models of Human Disease. Journal of Virology, 2012, 86, 884-897.	3.4	132
83	Induction of Alternatively Activated Macrophages Enhances Pathogenesis during Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2012, 86, 13334-13349.	3.4	88
84	Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63. Journal of Virology, 2012, 86, 12816-12825.	3.4	239
85	Potential role for alternatively activated macrophages in the secondary bacterial infection during recovery from influenza. Immunology Letters, 2012, 141, 227-234.	2.5	58
86	Yeast Based Small Molecule Screen for Inhibitors of SARS-CoV. PLoS ONE, 2011, 6, e28479.	2.5	37
87	Transcriptomic Analysis Reveals a Mechanism for a Prefibrotic Phenotype in STAT1 Knockout Mice during Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2010, 84, 11297-11309.	3.4	38
88	The Open Reading Frame 3a Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Promotes Membrane Rearrangement and Cell Death. Journal of Virology, 2010, 84, 1097-1109.	3.4	119
89	SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism. PLoS Pathogens, 2010, 6, e1000849.	4.7	139
90	Metagenomic Analysis of the Viromes of Three North American Bat Species: Viral Diversity among Different Bat Species That Share a Common Habitat. Journal of Virology, 2010, 84, 13004-13018.	3.4	194

#	Article	IF	CITATIONS
91	Novel Influenza Virus NS1 Antagonists Block Replication and Restore Innate Immune Function. Journal of Virology, 2009, 83, 1881-1891.	3.4	91
92	Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like Domain and Catalytic Domain Regulate Antagonism of IRF3 and NF-κB Signaling. Journal of Virology, 2009, 83, 6689-6705.	3.4	325
93	Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection. Journal of Virology, 2009, 83, 7062-7074.	3.4	156
94	Glycan microarray analysis of <i>Candida glabrata</i> adhesin ligand specificity. Molecular Microbiology, 2008, 68, 547-559.	2.5	128
95	SARS coronavirus and innate immunity. Virus Research, 2008, 133, 101-112.	2.2	226
96	Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation. Microbiology and Molecular Biology Reviews, 2008, 72, 672-685.	6.6	95
97	Severe Acute Respiratory Syndrome Coronavirus Open Reading Frame (ORF) 3b, ORF 6, and Nucleocapsid Proteins Function as Interferon Antagonists. Journal of Virology, 2007, 81, 548-557.	3.4	601
98	Severe Acute Respiratory Syndrome Coronavirus Evades Antiviral Signaling: Role of nsp1 and Rational Design of an Attenuated Strain. Journal of Virology, 2007, 81, 11620-11633.	3.4	315
99	Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane. Journal of Virology, 2007, 81, 9812-9824.	3.4	472
100	Sars Coronavirus Accessory ORFs Encode Luxury Functions. Advances in Experimental Medicine and Biology, 2006, 581, 149-152.	1.6	13
101	Severe Acute Respiratory Syndrome Coronavirus Group-Specific Open Reading Frames Encode Nonessential Functions for Replication in Cell Cultures and Mice. Journal of Virology, 2005, 79, 14909-14922.	3.4	237
102	The ωâ€site sequence of glycosylphosphatidylinositolâ€anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Molecular Microbiology, 2003, 50, 883-896.	2.5	86
103	Modular domain structure in theCandida glabrataadhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Molecular Microbiology, 2002, 46, 479-492.	2.5	134
104	RNA Polymerase I Transcription in a Brassica Interspecific Hybrid and Its Progenitors: Tests of Transcription Factor Involvement in Nucleolar Dominance. Genetics, 1999, 152, 451-460.	2.9	45