List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723209/publications.pdf Version: 2024-02-01

	101543	161849
4,104	36	54
citations	h-index	g-index
153	153	3119
docs citations	times ranked	citing authors
	citations 153	4,104 36 citations h-index 153 153

<u>7ης Ι Δ1/</u>

#	Article	IF	CITATIONS
1	Nanoscale metal oxide-based composite membranes with fast ion channel for Li metal protection. Ionics, 2022, 28, 951-960.	2.4	0
2	Enhanced redox and reoxidation tolerances of Ce0.8Gd0.2O1.9 electrolyte for Ni cermet anodes in single-chamber SOFCs. Journal of Solid State Electrochemistry, 2022, 26, 865-873.	2.5	1
3	Quantum transport in a one-dimensional quasicrystal with mobility edges. Physical Review A, 2022, 105,	2.5	6
4	A hydrophobic membrane to enable lithium-air batteries to operate in ambient air with a long cycle life. Electrochimica Acta, 2022, 421, 140517.	5.2	5
5	High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 2503-2510.	7.1	12
6	Electrochemical performance of La2NiO4+δ-Ce0.55La0.45O2â~'δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. Journal of Advanced Ceramics, 2021, 10, 328-337.	17.4	50
7	Waste Biomass Derived Active Carbon as Cost-Effective and Environment-Friendly Cathode Material for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2021, 168, 050542.	2.9	2
8	In Situ Surface Film Formed by Solid‧tate Anodic Oxidation for Stable Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2101737.	14.9	12
9	Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0·5Sr0·5Fe0·9W0·103-δelectrode for symmetric solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 30101-30111.	7.1	23
10	Advanced Engineering for Cathode in Lithium–Oxygen Batteries: Flexible 3D Hierarchical Porous Architecture Design and Its Functional Modification. Advanced Functional Materials, 2021, 31, 2105664.	14.9	14
11	Flame-sculptured micron-porous silver wire for fiber-shaped energy storage and surface-enhanced Raman scattering. Journal of Alloys and Compounds, 2020, 823, 153523.	5.5	3
12	Insight into high electrochemical activity of reduced LaO·3SrO·7FeO·7TiO·3O3 electrode for high temperature CO2 electrolysis. Electrochimica Acta, 2020, 332, 135464.	5.2	19
13	Heterostructural Ni3S2–Fe5Ni4S8 hybrids for efficient electrocatalytic oxygen evolution. Journal of Materials Science, 2020, 55, 15963-15974.	3.7	11
14	Tailoring tantalum doping into a perovskite ferrite to obtain a highly active and stable anode for solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 18778-18791.	10.3	24
15	Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell. Renewable Energy, 2020, 158, 410-420.	8.9	20
16	Sulfur poisoning and the regeneration of the solid oxide fuel cell with metal catalyst-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δanode. International Journal of Hydrogen Energy, 2020, 45, 15650-15657.	7.1	11
17	Phosphor thermometry at 5 kHz rate using a high-speed fiber-optic spectrometer. Journal of Applied Physics, 2020, 127, .	2.5	11
18	Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-Î′ (x=0–0.1) as cathode for solid oxide fuel cells. Journal of Power Sources, 2020, 453, 227875.	7.8	23

#	Article	IF	CITATIONS
19	Electrochemical performance evaluation of FeCo2O4 spinel composite cathode for solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 829, 154493.	5.5	18
20	Investigations on sulfur poisoning mechanisms of a solid oxide fuel cell with niobium-doped ferrate perovskite anode. Electrochimica Acta, 2020, 335, 135703.	5.2	5
21	Understanding the Relationships between Morphology, Solid Electrolyte Interphase Composition, and Coulombic Efficiency of Lithium Metal. ACS Applied Materials & Interfaces, 2020, 12, 22268-22277.	8.0	21
22	Graphene quantum dots as a highly efficient electrocatalyst for lithium–oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 22356-22368.	10.3	20
23	LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Frontiers of Materials Science, 2019, 13, 277-287.	2.2	19
24	Effects of a YSZ porous layer between electrolyte and oxygen electrode in solid oxide electrolysis cells on the electrochemical performance and stability. International Journal of Hydrogen Energy, 2019, 44, 14493-14499.	7.1	19
25	Temperatureâ€dependent electrical transport behavior and structural evolution in hollanditeâ€type titaniumâ€based oxide. Journal of the American Ceramic Society, 2019, 102, 6741-6750.	3.8	7
26	Morphology evolution and exsolution mechanism of a partially decomposed anode for intermediate temperature-solid oxide fuel cells. Electrochimica Acta, 2019, 304, 30-41.	5.2	18
27	Regeneration of sulfur poisoned La0.75Sr0.25Cr0.5Mn0.5O3-δ anode of solid oxide fuel cell using electrochemical oxidative method. Electrochimica Acta, 2019, 304, 342-349.	5.2	7
28	Effect of the angle between gas flow direction and electrode on single-chamber SOFC stacks. Journal of Solid State Electrochemistry, 2019, 23, 1651-1657.	2.5	4
29	Misfit-layered cobaltite Ca3Co4O9+Ĩ´as a new electrode for supercapacitor with excellent cycling stability. Journal of Alloys and Compounds, 2019, 792, 357-364.	5.5	10
30	Enhanced performance of a single-chamber solid oxide fuel cell with dual gas supply method. Ionics, 2019, 25, 1281-1289.	2.4	3
31	Effects of discharge mode and fuel treating temperature on the fuel utilization of direct carbonÂsolid oxide fuel cell. International Journal of Hydrogen Energy, 2019, 44, 1174-1181.	7.1	18
32	Titanium-substituted ferrite perovskite: An excellent sulfur and coking tolerant anode catalyst for SOFCs. Catalysis Today, 2019, 330, 217-221.	4.4	27
33	Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS ₂ nanosheets. RSC Advances, 2018, 8, 14369-14376.	3.6	36
34	On the limiting factor of impregnation methods for developing Cu/CeO2 anodes for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2018, 22, 1735-1743.	2.5	11
35	CNF-grafted carbon fibers as a binder-free cathode for Lithium Oxygen batteries with a superior performance. International Journal of Hydrogen Energy, 2018, 43, 739-747.	7.1	14
36	Cellular Structure Fabricated on Ni Wire by a Simple and Costâ€Effective Directâ€Flame Approach and Its Application in Fiberâ€Shaped Supercapacitors. ChemSusChem, 2018, 11, 985-993.	6.8	14

#	Article	IF	CITATIONS
37	Niobium Doped Lanthanum Strontium Ferrite as A Redoxâ€Stable and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemSusChem, 2018, 11, 254-263.	6.8	52
38	In-situ reduction synthesis of La2O3/NiM-NCNTs (MÂ= Fe, Co) as efficient bifunctional electrocatalysts for oxygen reduction and evolutionÂreactions. International Journal of Hydrogen Energy, 2018, 43, 21959-21968.	7.1	12
39	Vibrational energy redistribution of selectively excite liquid acetonitrile. European Physical Journal D, 2018, 72, 1.	1.3	4
40	In situ fabrication of cellular architecture on silver metals using methane/oxygen gas mixture and its application for energy storage. Electrochimica Acta, 2018, 280, 25-32.	5.2	5
41	A Highly Efficient and Robust Perovskite Anode with Iron–Palladium Coâ€exsolutions for Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2018, 11, 2593-2603.	6.8	25
42	Phonon-assisted anti-Stokes excitation: Mechanism for the unusual temperature dependence of the Ce3+ luminescence in yttrium aluminum garnet. Journal of Applied Physics, 2018, 124, .	2.5	3
43	In situ fabrication of porous graphene electrodes for high-performance lithium oxygen batteries. International Journal of Hydrogen Energy, 2018, 43, 16128-16135.	7.1	5
44	Tracking intramolecular energy redistribution dynamics in aryl halides: the effect of halide mass. RSC Advances, 2018, 8, 29775-29780.	3.6	7
45	High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3-δanode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon. International Journal of Hydrogen Energy, 2018, 43, 12358-12367.	7.1	39
46	A novel ZnO-based inorganic/organic bilayer with low resistance for Li metal protection. Energy Storage Materials, 2018, 14, 392-401.	18.0	44
47	Enhanced electrochemical performance of co-synthesized La2NiO4+δ-Ce0.55La0.45O2-δ composite cathode for IT-SOFCs. Journal of Alloys and Compounds, 2017, 705, 105-111.	5.5	17
48	Origin of the Ultrafast Response of the Lateral Photovoltaic Effect in Amorphous MoS ₂ /Si Junctions. ACS Applied Materials & Interfaces, 2017, 9, 18362-18368.	8.0	46
49	High activity oxide Pr0.3Sr0.7Ti0.3Fe0.7O3â^´Î´ as cathode of SOEC for direct high-temperature steam electrolysis. International Journal of Hydrogen Energy, 2017, 42, 12104-12110.	7.1	20
50	Cellular Ni sheet created by a simple oxidation-reduction process for enhanced supercapacitor performance. Journal of Alloys and Compounds, 2017, 711, 287-293.	5.5	6
51	Tracking Intramolecular Vibrational Redistribution in Polyatomic Small-Molecule Liquids by Ultrafast Time–Frequency-Resolved CARS. Journal of Physical Chemistry A, 2017, 121, 4948-4952.	2.5	17
52	Pr and Ti co-doped Strontium Ferrite as a Novel Hydrogen Electrode for Solid Oxide Electrolysis Cell. Electrochimica Acta, 2017, 232, 542-549.	5.2	17
53	Sulfur poisoning and attempt of oxidative regeneration of La 0.75 Sr 0.25 Cr 0.5 Mn 0.5 O 3â~î~ anode for solid oxide fuel cell. Journal of Alloys and Compounds, 2017, 698, 794-799.	5.5	19
54	3D-Hierarchical porous nickel sculptured by a simple redox process and its application in high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20709-20719.	10.3	19

#	Article	IF	CITATIONS
55	Strontium doped lanthanum manganite (LSM) effects on electrochemical performance of LSM/MnO2 composites for supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 17020-17025.	2.2	9
56	A novel La2NiO4+δ-La3Ni2O7-δ-Ce0.55La0.45O2-δ ternary composite cathode prepared by the co-synthesis method for IT-SOFCs. International Journal of Hydrogen Energy, 2017, 42, 17202-17210.	7.1	9
57	Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material. Electrochemistry Communications, 2016, 69, 80-83.	4.7	93
58	The contribution of doped-Al to the colossal permittivity properties of Al _x Nb _{0.03} Ti _{0.97â^'x} O ₂ rutile ceramics. Journal of Materials Chemistry C, 2016, 4, 6798-6805.	5.5	90
59	Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability. Electrochimica Acta, 2016, 222, 1585-1591.	5.2	32
60	Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3â^'d films. Scientific Reports, 2016, 6, 30335.	3.3	8
61	Continuous conversion of biomass wastes in a La0.75Sr0.25Cr0.5Mn0.5O3–δ based carbon–air battery. International Journal of Hydrogen Energy, 2016, 41, 5057-5062.	7.1	28
62	Rapid porosity formation of silver under SOFC conditions in methane-oxygen mixed gas. International Journal of Hydrogen Energy, 2016, 41, 22344-22353.	7.1	6
63	Electrochemically Driven Deactivation and Recovery in PrBaCo ₂ O _{5+<i>Î′</i>} Oxygen Electrodes for Reversible Solid Oxide Fuel Cells. ChemSusChem, 2016, 9, 2443-2450.	6.8	31
64	Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline. Scientific Reports, 2016, 6, 21478.	3.3	93
65	Enhanced photocatalytic activity on polarized ferroelectric KNbO ₃ . RSC Advances, 2016, 6, 108883-108887.	3.6	50
66	The comparative theoretical study of the LaBO3 (001) (BÂ=ÂMn, Fe, Co, and Ni) surface properties and oxygen adsorption mechanisms. Ionics, 2016, 22, 1153-1158.	2.4	6
67	Advanced Technologies for High-Temperature Solid Oxide Fuel Cells. Electrochemical Energy Storage and Conversion, 2015, , 307-337.	0.0	0
68	Investigation on a novel composite solid oxide fuel cell anode with La0.6Sr0.4Co0.2Fe0.8O3â~δ derived phases. Electrochimica Acta, 2015, 160, 89-93.	5.2	20
69	A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite. RSC Advances, 2015, 5, 5858-5862.	3.6	42
70	Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3â^î^ anode in solid oxide fuel cells. Journal of Power Sources, 2015, 285, 354-359.	7.8	20
71	Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell. International Journal of Hydrogen Energy, 2015, 40, 16572-16577.	7.1	68
72	Fast and sensitive lateral photovoltaic effects in Fe ₃ O ₄ /Si Schottky junction. RSC Advances, 2015, 5, 65048-65051.	3.6	25

#	Article	IF	CITATIONS
73	Performance and stability of co-synthesized Sm0.5Sr0.5CoO3-Sm0.2Ce0.8O1.9 oxygen electrode for reversible solid oxide cells. Electrochimica Acta, 2015, 180, 1085-1093.	5.2	9
74	Performance and stability of co-synthesized Sm 0.5 Sr 0.5 CoO 3 –Ce 0.8 Sm 0.2 O 1.9 composite oxygen electrode for solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2015, 40, 561-567.	7.1	19
75	Coâ€synthesis of Sm _{0.5} Sr _{0.5} CoO ₃ ‣m _{0.2} Ce _{0.8} O _{1.9Composite Cathode with Enhanced Electrochemical Property for Intermediate Temperature SOFCs. Fuel Cells. 2014. 14. 966-972.}	b> 2.4	10
76	Sm _{0.5} Sr _{0.5} CoO ₃ –Sm _{0.2} Ce _{0.8} O _{1.9Composite Oxygen Electrodes for Solid Oxide Electrolysis Cells. Fuel Cells, 2014, 14, 76-82.}	ub> 2.4	23
77	Cobalt-impregnated La0.75Sr0.25Cr0.5Mn0.5O3â^î´anodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 7980-7987.	7.1	17
78	Functionally graded cathodes based on double perovskite type GdBaCo2O5+δoxide. Electrochimica Acta, 2014, 134, 136-142.	5.2	24
79	A rapid preparation of acicular Ni impregnated anode with enhanced conductivity and operational stability. Journal of Power Sources, 2014, 256, 424-429.	7.8	9
80	Adsorption of Sulfurâ€Containing Species on LaCrO ₃ (001) Surface: A Firstâ€Principles Study. Fuel Cells, 2013, 13, 1040-1047.	2.4	3
81	Effect of gas supply method on the performance of the single-chamber SOFC micro-stack and the single cells. Journal of Solid State Electrochemistry, 2013, 17, 269-275.	2.5	8
82	Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. International Journal of Hydrogen Energy, 2013, 38, 2413-2420.	7.1	33
83	Effect of flow geometry on anode-supported single chamber SOFCs arrayed as V-shape. International Journal of Hydrogen Energy, 2013, 38, 1976-1982.	7.1	5
84	Effect of stack configurations on single chamber solid oxide fuel cell, anode–cathode, anode–anode, and cathode–cathode configuration. Electrochimica Acta, 2013, 104, 64-68.	5.2	3
85	The Effect of Adding Ce _{1–} _{<i>x</i>} Sm _{<i>x</i>} O _{2–} _{<i>x</i>} _{ with Different Sm Contents on the Electrochemical Performance of GdBaCo₂O_{5+Î<} Based Composite Cathode, Fuel Cells, 2013, 13, 289-297.}	/2 2.4	6
86	The Interaction of Noble Metal With La _{1–} _{<i>x</i>} Sr _{<i>x</i>} MnO ₃ (001) Surface and Catalytic Role for Oxygen Adsorption: A Density Functional Theory Study. Fuel Cells, 2012, 12, 1048-1055.	2.4	0
87	Ag2O–Bi2O3 composites: synthesis, characterization and high efficient photocatalytic activities. CrystEngComm, 2012, 14, 5705.	2.6	44
88	Ba and Gd Doping Effect in (Ba _{<i>x</i>} Sr _{1–} _{<i>x</i>}) _{0.95} Gd _{0.05} Co _{ (<i>x </i>= 0.1–0.9) Cathode on the Phase Structure and Electrochemical Performance. Fuel Cells, 201 12, 633-641.}	0,8 2;*	•Fge _{0.2}
89	Evaluation of a Nonâ€sealed Solid Oxide Fuel Cell Stack with Cells Embedded in Plane Configuration. Fuel Cells, 2012, 12, 523-529.	2.4	4
90	Compaction pressure effect on microstructure and electrochemical performance of GdBaCo2O5+δ	4.8	5

cathode for IT-SOFCs. Ceramics International, 2012, 38, 2159-2164.

#	Article	IF	CITATIONS
91	Evaluation of (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3â^' cathode for intermediate temperature solid oxide fuel cell. Ceramics International, 2012, 38, 3039-3046.	4.8	20
92	A direct flame solid oxide fuel cell for potential combined heat and power generation. International Journal of Hydrogen Energy, 2012, 37, 8621-8629.	7.1	39
93	Effect of characteristics of (Sm,Ce)O2 powder on the fabrication and performance of anode-supported solid oxide fuel cells. Materials Research Bulletin, 2012, 47, 121-129.	5.2	6
94	Structure, electrical and thermal properties of (Ba0.5Sr0.5)1â^'xGdxCo0.8Fe0.2O3â^'δ perovskite as a solid-oxide fuel cell cathode. Solid State Ionics, 2012, 207, 38-43.	2.7	9
95	A Performance Study of Solid Oxide Fuel Cells With BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3–δ} Electrolyte Developed by Sprayâ€Modified Pressing Method. Fuel Cells, 2012, 12, 141-145.	2.4	21
96	Study of a Singleâ€Chamber Solid Oxide Fuel Cell Microstack with Vâ€Shaped Congenerâ€Electrodeâ€Facing Configuration. Fuel Cells, 2012, 12, 4-10.	2.4	2
97	GdBaCo2O5+δ–Sm0.2Ce0.8O1.9 composite cathodes for intermediate temperature SOFCs. Journal of Alloys and Compounds, 2011, 509, 3651-3655.	5.5	30
98	Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7661-7669.	7.1	19
99	Fabrication and performance test of solid oxide fuel cells with screen-printed yttria-stabilized zirconia electrolyte membranes. Journal of Solid State Electrochemistry, 2011, 15, 2661-2665.	2.5	6
100	A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods. Journal of Power Sources, 2011, 196, 729-733.	7.8	73
101	Paperâ€Fibres Used as a Poreâ€Former for Anode Substrate of Solid Oxide Fuel Cell. Fuel Cells, 2011, 11, 172-177.	2.4	16
102	Effect of adding urea on performance of Cu/CeO2/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method. Electrochimica Acta, 2011, 56, 2230-2236.	5.2	21
103	Redox of Ni/YSZ anodes and oscillatory behavior in single-chamber SOFC under methane oxidation conditions. Electrochimica Acta, 2011, 56, 6688-6695.	5.2	27
104	A right-angular configuration for the single-chamber solid oxide fuel cell. International Journal of Hydrogen Energy, 2011, 36, 3147-3152.	7.1	4
105	Nanosized Ce0.8Sm0.2O1.9 infiltrated GdBaCo2O5+δ cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 6151-6159.	7.1	42
106	A non-sealed solid oxide fuel cell micro-stack with two gas channels. International Journal of Hydrogen Energy, 2011, 36, 7251-7256.	7.1	8
107	Effects of the single chamber SOFC stack configuration on the performance of the single cells. Solid State lonics, 2010, 181, 939-942.	2.7	10
108	Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3â~'δ impregnated anodes. Journal of Power Sources, 2010, 195, 1793-1798.	7.8	35

#	Article	IF	CITATIONS
109	Performance of an annular solid-oxide fuel cell micro-stack array operating in single-chamber conditions. Journal of Power Sources, 2010, 195, 4247-4251.	7.8	5
110	Investigations on Pr1.6Sr0.4NiO4–YSZ–Ag composite cathode for solid oxide fuel cells. Journal of Physics and Chemistry of Solids, 2010, 71, 230-234.	4.0	5
111	Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δ double-perovskite type oxides. International Journal of Hydrogen Energy, 2010, 35, 3775-3782.	7.1	50
112	Fabrication and evaluation of a Ni/La0.75Sr0.25Cr0.5Fe0.5O3â^î^ co-impregnated yttria-stabilized zirconia anode for single-chamber solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 6897-6904.	7.1	20
113	A comparison of La0.75Sr0.25Cr0.5Mn0.5O3â^î^ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs. Electrochimica Acta, 2010, 55, 3932-3938.	5.2	30
114	Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell. Electrochimica Acta, 2010, 55, 5538-5544.	5.2	36
115	Development and performance of diopside based glass-ceramic sealants for solid oxide fuel cells. Journal of Non-Crystalline Solids, 2010, 356, 1070-1080.	3.1	36
116	A Novel Cellâ€Array Design for Single Chamber SOFC Microstack. Fuel Cells, 2009, 9, 717-721.	2.4	15
117	Enhanced performance of solid oxide fuel cells with Ni/CeO2 modified La0.75Sr0.25Cr0.5Mn0.5O3â^' anodes. Journal of Power Sources, 2009, 190, 326-330.	7.8	44
118	Study on impedance spectra of La0.7Sr0.3MnO3 and Sm0.2Ce0.8O1.9-impregnated La0.7Sr0.3MnO3 cathode in single chamber fuel cell condition. Electrochimica Acta, 2009, 54, 4726-4730.	5.2	12
119	Performance evolution of NiO/yttria-stabilized zirconia anodes fabricated at different compaction pressures. Electrochimica Acta, 2009, 54, 1355-1361.	5.2	11
120	Preparation and characteristics of Pr1.6Sr0.4NiO4+YSZ as composite cathode of solid oxide fuel cells. Journal of Physics and Chemistry of Solids, 2009, 70, 665-668.	4.0	21
121	Behavior of 3mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating. Journal of Power Sources, 2009, 186, 128-132.	7.8	14
122	A novel design of single-chamber SOFC micro-stack operated in methane–oxygen mixture. Electrochemistry Communications, 2009, 11, 347-350.	4.7	29
123	Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3â~î´ perovskite oxide for IT-SOFC cathode. Journal of Power Sources, 2008, 176, 1-8.	7.8	168
124	Thermal, electrical, and electrochemical properties of Nd-doped Ba0.5Sr0.5 Co0.8Fe0.2O3â^'δ as a cathode material for SOFC. Solid State Ionics, 2008, 178, 1853-1858.	2.7	80
125	Oxygen pump method for leak rate testing of SiO2–B2O3–Al2O3–BaO–PbO2–ZnO glass sealant for SOFC. Solid State Ionics, 2008, 179, 1286-1290.	2.7	7
126	Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs. Journal of Membrane Science, 2008, 318, 445-451.	8.2	67

#	Article	IF	CITATIONS
127	Experimental study on effect of compaction pressure on performance of SOFC anodes. Journal of Power Sources, 2008, 180, 301-308.	7.8	12
128	Performance of an anode-supported SOFC with anode functional layers. Electrochimica Acta, 2008, 53, 7825-7830.	5.2	118
129	Novel in situ method (vacuum assisted electroless plating) modified porous cathode for solid oxide fuel cells. Electrochemistry Communications, 2008, 10, 844-847.	4.7	25
130	Performances of Ba0.5Sr0.5Co0.6Fe0.4O3â^ìl`–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. Journal of Alloys and Compounds, 2008, 448, 116-121.	5.5	60
131	Characterization of GdBaCo2O5+l̃´ cathode for IT-SOFCs. Journal of Alloys and Compounds, 2008, 454, 274-279.	5.5	92
132	Characteristics of NiO-YSZ anode based on NiO particles synthesized by the precipitation method. Journal of Alloys and Compounds, 2008, 454, 447-453.	5.5	32
133	Study on Ba0.5Sr0.5Co0.8Fe0.2O3â~δ–Sm0.5Sr0.5CoO3â~δ composite cathode materials for IT-SOFCs. Journal of Alloys and Compounds, 2008, 465, 274-279.	5.5	43
134	Characteristics of a SiO2–B2O3–Al2O3–BaCO3–PbO2–ZnO glass–ceramic sealant for SOFCs. Journ of Alloys and Compounds, 2007, 432, 189-193.	al_ 5.5	37
135	Electrical and thermal properties of (Ba0.5Sr0.5) 1â^'xSmxCo0.8Fe0.2O3â^'δ perovskite oxides. Solid State Ionics, 2007, 178, 417-422.	2.7	43
136	Electrochemical performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3â^î^r as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 165, 97-101.	7.8	32
137	Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. Journal of Power Sources, 2007, 167, 84-89.	7.8	47
138	Effects of anode surface modification on the performance of low temperature SOFCs. Journal of Power Sources, 2007, 171, 489-494.	7.8	37
139	Thermal, electrical, and electrochemical properties of Lanthanum-doped Ba0.5Sr0.5 Co0.8Fe0.2O3–δ. Journal of Physics and Chemistry of Solids, 2007, 68, 1707-1712.	4.0	54
140	Ba0.5Sr0.5Zn0.2Fe0.8O3??Perovskite Oxide as a Novel Cathode for Intermediate-Temperature Solid-Oxide Fuel Cells. Journal of the American Ceramic Society, 2007, 90, 3364-3366.	3.8	52
141	Fabrication and performance of anode-supported YSZ films by slurry spin coating. Solid State Ionics, 2007, 177, 3455-3460.	2.7	53
142	YSZ films fabricated by a spin smoothing technique and its application in solid oxide fuel cell. Journal of Power Sources, 2007, 163, 957-959.	7.8	38
143	Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs. Journal of Power Sources, 2007, 164, 17-23.	7.8	33
144	Enhanced performance of a single-chamber solid oxide fuel cell with an SDC-impregnated cathode. Journal of Power Sources, 2007, 167, 58-63.	7.8	40

#	Article	IF	CITATIONS
145	A study of (Ba0.5Sr0.5)1â^'xSmxCo0.8Fe0.2O3â^'δ as a cathode material for IT-SOFCs. Journal of Alloys and Compounds, 2006, 426, 408-414.	5.5	68
146	Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9 films fabricated by slurry spin coating. Journal of Power Sources, 2006, 159, 637-640.	7.8	61
147	Development of yttria-stabilized zirconia thin films via slurry spin coating for intermediate-to-low temperature solid oxide fuel cells. Journal of Power Sources, 2006, 160, 436-438.	7.8	62
148	Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1â^'xCo0.8Fe0.2O3â^'δ (0.3≤â‰0.7). Journal of the European Ceramic Society, 2006, 26, 2827-2832.	5.7	217
149	Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC. Journal of Membrane Science, 2006, 286, 255-259.	8.2	43
150	A study on PrMnO3-based perovskite oxides used in SOFC cathodes. Journal of Alloys and Compounds, 2002, 345, 265-270.	5.5	33
151	Performance of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2Composite Cathode Materials for IT-SOFCs. Advanced Materials Research, 0, 311-313, 2309-2314.}	&g 1; &<s	u b >3-î´&
152	Adiabatic Pumping in a Generalized Aubry–André Model Family with Mobility Edges. Annalen Der Physik, 0, , 2100270.	2.4	2