Stuart Dashper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7231998/publications.pdf

Version: 2024-02-01

111	4,863	38	65
papers	citations	h-index	g-index
111	111	111	4563 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports, 2017, 7, 7072.	3.3	267
2	Kappacin, a Novel Antibacterial Peptide from Bovine Milk. Antimicrobial Agents and Chemotherapy, 2001, 45, 2309-2315.	3.2	175
3	Progression of chronic periodontitis can be predicted by the levels of <i>Porphyromonas gingivalis</i> and <i>Treponema denticola</i> in subgingival plaque. Oral Microbiology and Immunology, 2009, 24, 469-477.	2.8	166
4	Porphyromonas gingivalis Gingipains: The Molecular Teeth of a Microbial Vampire. Current Protein and Peptide Science, 2003, 4, 409-426.	1.4	158
5	Virulence Factors of the Oral Spirochete Treponema denticola. Journal of Dental Research, 2011, 90, 691-703.	5.2	157
6	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	3.9	138
7	The RgpB C-Terminal Domain Has a Role in Attachment of RgpB to the Outer Membrane and Belongs to a Novel C-Terminal-Domain Family Found in Porphyromonas gingivalis. Journal of Bacteriology, 2006, 188, 6376-6386.	2.2	136
8	Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylum and Have in Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modification, and Cell-Surface Attachment. Journal of Proteome Research, 2013, 12, 4449-4461.	3.7	120
9	The outer membrane protein LptO is essential for the Oâ€deacylation of LPS and the coâ€ordinated secretion and attachment of Aâ€LPS and CTD proteins in <i>Porphyromonas gingivalis</i> Molecular Microbiology, 2011, 79, 1380-1401.	2.5	116
10	Role of RgpA, RgpB, and Kgp Proteinases in Virulence of <i>Porphyromonas gingivalis</i> W50 in a Murine Lesion Model. Infection and Immunity, 2001, 69, 7527-7534.	2.2	114
11	Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. Biochemical Journal, 2002, 363, 105-115.	3.7	113
12	Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses. PLoS Pathogens, 2014, 10, e1003955.	4.7	107
13	pH Regulation by Streptococcus mutans. Journal of Dental Research, 1992, 71, 1159-1165.	5.2	104
14	Incorporation of Casein Phosphopeptide-Amorphous Calcium Phosphate into a Glass-ionomer Cement. Journal of Dental Research, 2003, 82, 914-918.	5.2	97
15	Porphyromonas gingivalis Peptidylarginine Deiminase, a Key Contributor in the Pathogenesis of Experimental Periodontal Disease and Experimental Arthritis. PLoS ONE, 2014, 9, e100838.	2.5	97
16	Antigens of bacteria associated with periodontitis. Periodontology 2000, 2004, 35, 101-134.	13.4	93
17	Synergistic virulence of <i>Porphyromonas gingivalis</i> and <i>Treponema denticola</i> in a murine periodontitis model. Molecular Oral Microbiology, 2011, 26, 229-240.	2.7	92
18	Spheres of influence: <i>Porphyromonas gingivalis</i> outer membrane vesicles. Molecular Oral Microbiology, 2016, 31, 365-378.	2.7	92

#	Article	IF	CITATIONS
19	Porphyromonas gingivalis and Treponema denticola Synergistic Polymicrobial Biofilm Development. PLoS ONE, 2013, 8, e71727.	2.5	89
20	Porphyromonas gingivalis Type IX Secretion Substrates Are Cleaved and Modified by a Sortase-Like Mechanism. PLoS Pathogens, 2015, 11, e1005152.	4.7	86
21	Characterization of a Novel Outer Membrane Hemin-Binding Protein of Porphyromonas gingivalis. Journal of Bacteriology, 2000, 182, 6456-6462.	2.2	85
22	Dentinal tubule invasion and adherence by <i>Enterococcus faecalis</i> . International Endodontic Journal, 2008, 41, 873-882.	5.0	85
23	A Novel Porphyromonas gingivalis FeoB Plays a Role in Manganese Accumulation. Journal of Biological Chemistry, 2005, 280, 28095-28102.	3.4	81
24	Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. Biochemical Journal, 2002, 363, 105.	3.7	78
25	Divalent Metal Cations Increase the Activity of the Antimicrobial Peptide Kappacin. Antimicrobial Agents and Chemotherapy, 2005, 49, 2322-2328.	3.2	75
26	Outer Membrane Proteome and Antigens of Tannerella forsythia. Journal of Proteome Research, 2009, 8, 4279-4292.	3.7	71
27	Response of <i>Porphyromonas gingivalis</i> to Heme Limitation in Continuous Culture. Journal of Bacteriology, 2009, 191, 1044-1055.	2.2	65
28	Temporal development of the oral microbiome and prediction of early childhood caries. Scientific Reports, 2019, 9, 19732.	3.3	65
29	Lactic acid excretion by Streptococcus mutans. Microbiology (United Kingdom), 1996, 142, 33-39.	1.8	65
30	Antimicrobial Peptides and their Potential as Oral Therapeutic Agents. International Journal of Peptide Research and Therapeutics, 2007, 13, 505-516.	1.9	61
31	Comparative transcriptomic analysis of Porphyromonas gingivalisbiofilm and planktonic cells. BMC Microbiology, 2009, 9, 18.	3.3	61
32	Treponema denticola biofilm-induced expression of a bacteriophage, toxin–antitoxin systems and transposases. Microbiology (United Kingdom), 2010, 156, 774-788.	1.8	59
33	APorphyromonas gingivalisgenetic locus encoding a heme transport system. Oral Microbiology and Immunology, 2000, 15, 388-392.	2.8	52
34	Lactoferrin Inhibits Porphyromonas gingivalis Proteinases and Has Sustained Biofilm Inhibitory Activity. Antimicrobial Agents and Chemotherapy, 2012, 56, 1548-1556.	3.2	52
35	Remineralisation by Chewing Sugar-Free Gums in a Randomised, Controlled in situ Trial Including Dietary Intake and Gauze to Promote Plaque Formation. Caries Research, 2012, 46, 147-155.	2.0	52
36	Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms. Physiology and Behavior, 2020, 226, 113126.	2.1	51

#	Article	IF	Citations
37	Application of $\langle sup \rangle 16 \langle sup \rangle 0 / \langle sup \rangle 18 \langle sup \rangle 0$ reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of $\langle b \rangle \langle i \rangle P$ or phyromonas gingivali $\langle i \rangle \langle b \rangle s$ W50. Proteomics, 2008, 8, 1645-1660.	2.2	48
38	The role of <i>Candida albicans</i> candidalysin <i>ECE1</i> gene in oral carcinogenesis. Journal of Oral Pathology and Medicine, 2020, 49, 835-841.	2.7	46
39	Bacterial interactions in pathogenic subgingival plaque. Microbial Pathogenesis, 2016, 94, 60-69.	2.9	39
40	Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors. Frontiers in Microbiology, 2017, 8, 48.	3.5	39
41	Coaggregation of <i>Candida albicans </i> , <i>Actinomyces naeslundii </i> and <i>Streptococcus mutans </i> is <i>Candida albicans </i> strain dependent. FEMS Yeast Research, 2015, 15, fov 038.	2.3	38
42	Major proteins and antigens of Treponema denticola. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1421-1432.	2.3	37
43	Effects of Organic Acid Anions on Growth, Glycolysis, and Intracellular pH of Oral Streptococci. Journal of Dental Research, 2000, 79, 90-96.	5.2	36
44	Oral microbial biofilm models and their application to the testing of anticariogenic agents. Journal of Dentistry, 2016, 50, 1-11.	4.1	36
45	Sodium Ion-Driven Serine/Threonine Transport in Porphyromonas gingivalis. Journal of Bacteriology, 2001, 183, 4142-4148.	2.2	35
46	Differential Proteomic Analysis of a Polymicrobial Biofilm. Journal of Proteome Research, 2012, 11, 4449-4464.	3.7	34
47	Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis. Infection and Immunity, 2016, 84, 2575-2585.	2.2	34
48	Outer Membrane Vesicle Proteome of <i>Porphyromonas gingivalis</i> Is Differentially Modulated Relative to the Outer Membrane in Response to Heme Availability. Journal of Proteome Research, 2018, 17, 2377-2389.	3.7	34
49	Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms. Scientific Reports, 2019, 9, 9107.	3.3	34
50	Hemoglobin hydrolysis and heme acquisition by Porphyromonas gingivalis. Oral Microbiology and Immunology, 2004, 19, 50-56.	2.8	33
51	PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System. PLoS ONE, 2016, 11, e0164313.	2.5	33
52	Fluoride content of still bottled water in Australia. Australian Dental Journal, 2006, 51, 242-244.	1.5	31
53	An efficient method for enumerating oral spirochetes using flow cytometry. Journal of Microbiological Methods, 2010, 80, 123-128.	1.6	29
54	Polymicrobial biofilm formation by <i>Candida albicans, Actinomyces naeslundii </i> , and <i>Streptococcus mutans </i> i>is <i>Candida albicans </i> strain and medium dependent. Medical Mycology, 2016, 54, 856-864.	0.7	29

#	Article	IF	CITATIONS
55	The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 432.	3.9	29
56	Antibiotic susceptibility of <i>Aggregatibacter actinomycetemcomitans</i> JP2 in a biofilm. Journal of Oral Microbiology, 2013, 5, 20320.	2.7	28
57	Lysine acetylation is a common post-translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis. Journal of Proteomics, 2015, 128, 352-364.	2.4	28
58	Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms. PLoS ONE, 2016, 11, e0162322.	2.5	26
59	Acidogenic potential of soy and bovine milk beverages. Journal of Dentistry, 2012, 40, 736-741.	4.1	25
60	Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. Journal of Oral Pathology and Medicine, 2019, 48, 546-551.	2.7	23
61	The VicGeneration study - a birth cohort to examine the environmental, behavioural and biological predictors of early childhood caries: background, aims and methods. BMC Public Health, 2010, 10, 97.	2.9	22
62	Natural history of dental caries in very young Australian children. International Journal of Paediatric Dentistry, 2016, 26, 173-183.	1.8	21
63	Regulation of the 18 kDa heat shock protein in <i>Mycobacterium ulcerans</i> : an alphaâ€crystallin orthologue that promotes biofilm formation. Molecular Microbiology, 2010, 78, 1216-1231.	2.5	20
64	FimR and FimS: Biofilm Formation and Gene Expression in <i>Porphyromonas gingivalis</i> li>. Journal of Bacteriology, 2010, 192, 1332-1343.	2.2	20
65	Oxantel Disrupts Polymicrobial Biofilm Development of Periodontal Pathogens. Antimicrobial Agents and Chemotherapy, 2014, 58, 378-385.	3.2	20
66	Effect of matrix placement on furcation perforation repair. Journal of Endodontics, 1999, 25, 192-196.	3.1	18
67	<i>Streptococcus salivarius</i> K12 inhibits <i>Candida albicans</i> aggregation, biofilm formation and dimorphism. Biofouling, 2021, 37, 767-776.	2.2	16
68	The Porphyromonas gingivalis Ferric Uptake Regulator Orthologue Binds Hemin and Regulates Hemin-Responsive Biofilm Development. PLoS ONE, 2014, 9, e111168.	2.5	16
69	Cloning, expression and sequence analysis of the genes encoding the heterodimeric methylmalonyl-CoA mutase of Porphyromonas gingivalis W50. Gene, 1995, 167, 127-132.	2.2	15
70	Chemical synthesis, characterization and activity of RK-1, a novel ?-defensin-related peptide. Journal of Peptide Science, 2000, 6, 19-25.	1.4	15
71	CPP-ACP Promotes SnF ₂ Efficacy in a Polymicrobial Caries Model. Journal of Dental Research, 2019, 98, 218-224.	5.2	15
72	Inhibition of <i>Porphyromonas gingivalis</i> Biofilm by Oxantel. Antimicrobial Agents and Chemotherapy, 2010, 54, 1311-1314.	3.2	14

#	Article	IF	CITATIONS
73	<i>Porphyromonas gingivalis</i> Cysteine Proteinase Inhibition by κ-Casein Peptides. Antimicrobial Agents and Chemotherapy, 2011, 55, 1155-1161.	3.2	14
74	Monospecies and polymicrobial biofilms differentially regulate the phenotype of genotype-specific oral cancer cells. Carcinogenesis, 2019, 40, 184-193.	2.8	14
75	Oral Antibiotic for Empirical Management of Acute Dentoalveolar Infections—A Systematic Review. Antibiotics, 2021, 10, 240.	3.7	14
76	Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response?. FEMS Microbiology Reviews, 2021, 45, .	8.6	14
77	Histatin 5 Is a Substrate and Not an Inhibitor of the Arg- and Lys-Specific Proteinases ofPorphyromonas gingivalis. Biochemical and Biophysical Research Communications, 1998, 250, 474-478.	2.1	13
78	Streptococcus mutans biofilm disruption by κ-casein glycopeptide. Journal of Dentistry, 2013, 41, 521-527.	4.1	13
79	Identifying predictors of early childhood caries among Australian children using sequential modelling: Findings from the VicGen birth cohort study. Journal of Dentistry, 2020, 93, 103276.	4.1	13
80	Identification of an antigenic protein Pga30 from Porphyromonas gingivalis W50. Oral Microbiology and Immunology, 2000, 15, 383-387.	2.8	12
81	Cohort Profile: The VicGeneration (VicGen) study: An Australian oral health birth cohort. International Journal of Epidemiology, 2017, 46, 29-30.	1.9	12
82	The prebiotic effect of CPP-ACP sugar-free chewing gum. Journal of Dentistry, 2019, 91, 103225.	4.1	12
83	Incorporation of the microencapsulated antimicrobial agent phytoncide into denture base resin. Australian Dental Journal, 2018, 63, 302-311.	1.5	11
84	Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. Journal of Oral Microbiology, 2020, 12, 1808750.	2.7	11
85	Propeptide-Mediated Inhibition of Cognate Gingipain Proteinases. PLoS ONE, 2013, 8, e65447.	2.5	10
86	Microbiome profiles of non-responding and responding paired periodontitis sites within the same participants following non-surgical treatment. Journal of Oral Microbiology, 2022, 14, 2043595.	2.7	10
87	Branched-chain amino acid transport in Streptococcus mutans Ingbritt. Oral Microbiology and Immunology, 1993, 8, 167-171.	2.8	9
88	Feasibility and development of a cariogenic diet scale for epidemiological research. International Journal of Paediatric Dentistry, 2019, 29, 310-324.	1.8	9
89	Breastmilk influences development and composition of the oral microbiome. Journal of Oral Microbiology, 2022, 14, .	2.7	9
90	A methodological study to assess the measurement properties (reliability and validity) of a caries risk assessment tool for young children. Journal of Dentistry, 2020, 95, 103324.	4.1	8

#	Article	IF	CITATIONS
91	Effect of azithromycin on a red complex polymicrobial biofilm. Journal of Oral Microbiology, 2017, 9, 1339579.	2.7	7
92	Characterization of glutamine transport in Streptococcus mutans. Oral Microbiology and Immunology, 1995, 10, 183-187.	2.8	6
93	The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis. Genomics Data, 2015, 5, 167-168.	1.3	6
94	Sterilization of rotary NiTi instruments within endodontic sponges. International Endodontic Journal, 2016, 49, 850-857.	5.0	6
95	The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	6
96	Cysteine Protease Inhibitors: from Evolutionary Relationships to Modern Chemotherapeutic Design for the Treatment of Infectious Diseases. Current Protein and Peptide Science, 2010, 11, 725-743.	1.4	5
97	Bugs and Brains, the Gut and Mental Health Study: a mixed-methods study investigating microbiota composition and function in anxiety, depression and irritable bowel syndrome. BMJ Open, 2021, 11, e043221.	1.9	5
98	Temporal development of the infant oral microbiome. Critical Reviews in Microbiology, 2022, 48, 730-742.	6.1	5
99	The interplay between iron, haem and manganese in Porphyromonas gingivalis. Journal of Oral Biosciences, 2015, 57, 91-101.	2.2	4
100	Complete Amino Acid Sequence and Comparative Molecular Modeling of HPR from Streptococcus mutans Ingbritt. Biochemical and Biophysical Research Communications, 1994, 199, 1297-1304.	2.1	3
101	Antibacterial efficacy of caseinâ€derived peptides against <i>Enterococcus faecalis</i> . Australian Dental Journal, 2012, 57, 339-343.	1.5	3
102	Taxonomy of Oral Bacteria. Methods in Microbiology, 2018, , 171-201.	0.8	3
103	Odontogenic Bacterial Infections. , 2019, , 819-870.		2
104	Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS ONE, 2016, 11, e0151407.	2.5	1
105	The potential acidogenicity of liquid breakfasts. Journal of Dentistry, 2016, 49, 33-39.	4.1	1
106	Isolation and Functional Characterization of Fusobacterium nucleatum Bacteriophage. Methods in Molecular Biology, 2021, 2327, 51-68.	0.9	1
107	Sealing Ability Of Furcation Perforation Repair. Australian Endodontic Journal, 1998, 24, 109-110.	1.5	0
108	Inhibition of proteolytic activity of periodontal pathogens by casein-derived peptides. International Dairy Journal, 2012, 24, 22-26.	3.0	0

STUART DASHPER

#	Article	IF	CITATIONS
109	Nutrition and oral health in early childhood: associations with formal and informal childcare. Public Health Nutrition, 2021, 24, 1438-1448.	2.2	0
110	Polymicrobial nature of chronic oral disease. Microbiology Australia, 2015, 36, 22.	0.4	0
111	Odontogenic Bacterial Infections. , 2017, , 1-53.		O