Yukihiro Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723185/publications.pdf

Version: 2024-02-01

759233 794594 42 405 12 19 citations h-index g-index papers 42 42 42 549 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy. Langmuir, 2016, 32, 7606-7612.	3.5	42
2	Systematical Characterization of Phase Behaviors and Membrane Properties of Fatty Acid/Didecyldimethylammonium Bromide Vesicles. Langmuir, 2014, 30, 12721-12728.	3.5	38
3	Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Analytical Chemistry, 2015, 87, 4772-4780.	6.5	38
4	Chiral Selective Adsorption of Ibuprofen on a Liposome Membrane. Journal of Physical Chemistry B, 2016, 120, 2790-2795.	2.6	33
5	Multi-Level Characterization of the Membrane Properties of Resveratrol-Incorporated Liposomes. Journal of Physical Chemistry B, 2017, 121, 4091-4098.	2.6	26
6	Membrane Surface-Enhanced Raman Spectroscopy for Cholesterol-Modified Lipid Systems: Effect of Gold Nanoparticle Size. ACS Omega, 2019, 4, 13687-13695.	3.5	21
7	Induction of Chiral Recognition with Lipid Nanodomains Produced by Polymerization. Biomacromolecules, 2017, 18, 1180-1188.	5.4	17
8	Gel-Phase-like Ordered Membrane Properties Observed in Dispersed Oleic Acid/1-Oleoylglycerol Self-Assemblies: Systematic Characterization Using Raman Spectroscopy and a Laurdan Fluorescent Probe. Langmuir, 2018, 34, 2081-2088.	3.5	16
9	Characterization of Ionic Liquid Aqueous Two-Phase Systems: Phase Separation Behaviors and the Hydrophobicity Index between the Two Phases. Journal of Physical Chemistry B, 2019, 123, 5866-5874.	2.6	16
10	Insight into the Exosomal Membrane: From Viewpoints of Membrane Fluidity and Polarity. Langmuir, 2021, 37, 11195-11202.	3.5	15
11	Systematic Characterization of DMPC/DHPC Self-Assemblies and Their Phase Behaviors in Aqueous Solution. Colloids and Interfaces, 2018, 2, 73.	2.1	14
12	Systematic Characterization of Nanostructured Lipid Carriers from Cetyl Palmitate/Caprylic Triglyceride/Tween 80 Mixtures in an Aqueous Environment. Langmuir, 2021, 37, 4284-4293.	3.5	14
13	Liposomes Can Achieve Enantioselective C–C Bond Formation of an α-Amino Acid Derivative in Aqueous Media. ACS Omega, 2017, 2, 91-97.	3.5	10
14	A novel method of vesicle preparation by simple dilution of bicelle solution. Biochemical Engineering Journal, 2020, 162, 107725.	3.6	8
15	High performance optical resolution with liposome immobilized hydrogel. Colloids and Surfaces B: Biointerfaces, 2015, 136, 256-261.	5.0	7
16	Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. Langmuir, 2020, 36, 3242-3250.	3.5	7
17	Dependence of the Core–Shell Structure on the Lipid Composition of Nanostructured Lipid Carriers: Implications for Drug Carrier Design. ACS Applied Nano Materials, 2022, 5, 9958-9969.	5.0	7
18	Design of Pyrene–Fatty Acid Conjugates for Real-Time Monitoring of Drug Delivery and Controllability of Drug Release. ACS Omega, 2018, 3, 3572-3580.	3.5	6

#	Article	IF	CITATIONS
19	Liposome Membranes Assist the <scp>l</scp> -Proline-catalyzed Aldol Reaction of Acetone and <i>p</i> -Nitrobenzaldehyde in Water. Chemistry Letters, 2018, 47, 931-934.	1.3	6
20	Aggregation of chlorophyll a induced in self-assembled membranes composed of DMPC and DHPC. Colloids and Surfaces B: Biointerfaces, 2019, 175, 403-408.	5.0	6
21	Enzymatic hydrolysis of cellulose recovered from ionic liquid-salt aqueous two-phase system. Journal of Bioscience and Bioengineering, 2020, 129, 624-631.	2.2	6
22	Electrophoretic separation method for membrane poreâ€forming proteins in multilayer lipid membranes. Electrophoresis, 2016, 37, 762-768.	2.4	5
23	Preferential Adsorption of $\langle scp \rangle \langle scp \rangle$ -Histidine onto DOPC/Sphingomyelin/3 $\hat{1}^2$ -[$\langle i \rangle N \langle i \rangle \hat{1} \hat{1} \hat{1} \hat{2} \hat{1} \hat{1} \hat{1} \hat{1} \hat{1} \hat{1} \hat{1} 1$	3.5	5
24	Homochiral oligomerization of L-histidine in the presence of liposome membranes. Colloid and Polymer Science, 2015, 293, 3649-3653.	2.1	4
25	Development of Easy, Harmless, and Energy-saving Water Cleanup Method Based on Self-flotation of Hollow Glass Beads Coated with Fatty Acids. Chemistry Letters, 2016, 45, 544-546.	1.3	4
26	Enantioselective Câ€"C Bond Formation Enhanced by Self-Assembly of Achiral Surfactants. ACS Omega, 2017, 2, 1447-1453.	3.5	4
27	Modulation of the Belousov–Zhabotinsky Reaction with Lipid Bilayers: Effects of Lipid Head Groups and Membrane Properties. Langmuir, 2021, 37, 6811-6818.	3.5	4
28	Characterization of entrapment behavior of polyphenols in nanostructured lipid carriers and its effect on their antioxidative activity. Journal of Bioscience and Bioengineering, 2022, 134, 269-275.	2.2	4
29	Investigation of Fatty Acid Ketohydrazone Modified Liposome's Properties as a Drug Carrier. Journal of Drug Delivery, 2015, 2015, 1-7.	2.5	3
30	Development of Time-course Oxygen Binding Analysis for Hemoglobin-based Oxygen Carriers. Analytical Sciences, 2017, 33, 953-956.	1.6	3
31	Structure and Properties Characterization of Amphiphilic Dendrons Modified Lipid Membrane. Chemistry Letters, 2021, 50, 187-190.	1.3	3
32	Investigation of Quercetin interaction behaviors with lipid bilayers: Toward understanding its antioxidative effect within biomembrane. Journal of Bioscience and Bioengineering, 2021, 132, 49-55.	2.2	3
33	In Situ Cell Surface Modification for Surface-enhanced Raman Analysis of Cell Membrane. Chemistry Letters, 2016, 45, 622-624.	1.3	2
34	Characterization of DDAB/Cholesterol Vesicles and Its Comparison with Lipid/Cholesterol Vesicles. Journal of Nanoscience and Nanotechnology, 2018, 18, 1989-1994.	0.9	2
35	Changes Caused by Liposomes to the Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry B, 2020, 124, 9862-9869.	2.6	2
36	Characterization of pH-Responsive Self-Assembly Behaviors of Fatty Acid-Functionalized Prodrug. Biochemical Engineering Journal, 2020, 164, 107794.	3.6	1

#	Article	IF	CITATIONS
37	Site Specific Analysis of Anionic Lipid by Membrane Surface-enhanced Raman Spectroscopy with Different Sized Gold Nanoparticles. Chemistry Letters, 2020, 49, 1107-1110.	1.3	1
38	Analytical Chemistry by Electrophoresis. Analytical Sciences, 2020, 36, 395-396.	1.6	1
39	Effects of Lipid Bilayers and Polarity of the Organic Substrate on the Belousov–Zhabotinsky Reaction. Membrane, 2021, 46, 233-240.	0.0	1
40	Separation Methods Utilizing Characteristics of Lipid Self-assembled Structures. Bunseki Kagaku, 2019, 68, 663-670.	0.2	0
41	Development of Separation Sciences Utilizing the Specific Properties of Microscopic Separation Fields. Chromatography, 2018, 39, 1-6.	1.7	0
42	Silver Nanoparticle–Phospholipid Self–Assembly Systems for Membrane Surface– Enhanced Raman Spectroscopy Analysis. Membrane, 2020, 45, 187-192.	0.0	0