Gonzalo Jiménez-Osés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7231314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the role of pyrylium frameworks on π-stacking interactions: a combined <i>ab initio</i> and experimental study. Physical Chemistry Chemical Physics, 2022, 24, 1965-1973.	1.3	1
2	A Computational Perspective on Molecular Recognition by Galectins. Current Medicinal Chemistry, 2022, 29, 1219-1231.	1.2	2
3	Deconvoluting the Directed Evolution Pathway of Engineered Acyltransferase LovD. ChemCatChem, 2022, 14, e202101349.	1.8	7
4	Synthesis and Photophysics of Phenylene Based Triplet Donor–Acceptor Dyads: ortho vs. para Positional Effect on Intramolecular Triplet Energy Transfer. Journal of Photochemistry and Photobiology, 2022, 10, 100112.	1.1	2
5	Triplet photodynamic and up-conversion luminescence in donor–acceptor dyads with slip-stacked <i>vs.</i> co-facial arrangement. Journal of Materials Chemistry C, 2022, 10, 7093-7102.	2.7	2
6	Single Mutation on Trastuzumab Modulates the Stability of Antibody–Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry. Journal of the American Chemical Society, 2022, 144, 5284-5294.	6.6	9
7	Assessing the Mobility of Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Glycans by Structural and Computational Methods. Frontiers in Microbiology, 2022, 13, 870938.	1.5	1
8	Platform for Orthogonal <i>N</i> -Cysteine-Specific Protein Modification Enabled by Cyclopropenone Reagents. Journal of the American Chemical Society, 2022, 144, 10396-10406.	6.6	33
9	Synthesis of β ^{2,2} -Amino Acids by Stereoselective Alkylation of Isoserine Derivatives Followed by Nucleophilic Ring Opening of Quaternary Sulfamidates. Journal of Organic Chemistry, 2022, 87, 8730-8743.	1.7	2
10	Controlled masking and targeted release of redox-cycling ortho-quinones via a C–C bond-cleaving 1,6-elimination. Nature Chemistry, 2022, 14, 754-765.	6.6	18
11	Identification of Isomeric <i>N</i> â€Glycans by Conformer Distribution Fingerprinting using Ion Mobility Mass Spectrometry. Chemistry - A European Journal, 2021, 27, 2149-2154.	1.7	15
12	Replacing the Rhamnoseâ€Xylose Moiety of QSâ€21 with Simpler Terminal Disaccharide Units Attenuates Adjuvant Activity in Truncated Saponin Variants. Chemistry - A European Journal, 2021, 27, 4731-4737.	1.7	10
13	Nucleophilic catalysis of <i>p</i> -substituted aniline derivatives in acylhydrazone formation and exchange. Organic and Biomolecular Chemistry, 2021, 19, 7202-7210.	1.5	2
14	Structural insight into the unique conformation of cystathionine β-synthase from Toxoplasma gondii. Computational and Structural Biotechnology Journal, 2021, 19, 3542-3555.	1.9	5
15	The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chemical Biology, 2021, 2, 932-941.	2.0	8
16	1,2-Oxa/Thia-3-Azoles (Included in Volume 6, Other Five-Membered Rings With Three or More) Tj ETQq0 0 0 rgBT	/Overlock	18 Tf 50 142

17	Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nature Chemistry, 2021, 13, 231-235.	6.6	46
18	Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 2021, 9, 664097.	1.8	6

#	Article	IF	CITATIONS
19	Enthalpy–Entropy Compensation in Biomolecular Recognition: A Computational Perspective. ACS Omega, 2021, 6, 11122-11130.	1.6	30
20	Origin and Control of Chemoselectivity in Cytochrome <i>c</i> Catalyzed Carbene Transfer into Si–H and N–H bonds. Journal of the American Chemical Society, 2021, 143, 7114-7123.	6.6	27
21	Cosolute modulation of protein oligomerization reactions in the homeostatic timescale. Biophysical Journal, 2021, 120, 2067-2077.	0.2	2
22	Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions. Bioconjugate Chemistry, 2021, 32, 1812-1822.	1.8	3
23	Computer Prediction of p <i>K</i> _a Values in Small Molecules and Proteins. ACS Medicinal Chemistry Letters, 2021, 12, 1624-1628.	1.3	13
24	Biotin-phenosafranin as a new photosensitive conjugate for targeted therapy and imaging. New Journal of Chemistry, 2021, 45, 9691-9702.	1.4	5
25	Toward Enantiomerically Pure β-Seleno-α-amino Acids via Stereoselective <i>Se</i> -Michael Additions to Chiral Dehydroalanines. Organic Letters, 2021, 23, 1955-1959.	2.4	13
26	Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. Journal of the American Chemical Society, 2021, 143, 18733-18743.	6.6	19
27	Bacteriophage PRD1 as a nanoscaffold for drug loading. Nanoscale, 2021, 13, 19875-19883.	2.8	3
28	Sequential dual site-selective protein labelling enabled by lysine modification. Bioorganic and Medicinal Chemistry, 2020, 28, 115783.	1.4	3
29	Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectinâ€1. Chemistry - A European Journal, 2020, 26, 15643-15653.	1.7	22
30	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie - International Edition, 2020, 59, 23763-23771.	7.2	81
31	A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microbial Biotechnology, 2020, , .	2.0	3
32	Precise Installation of Diazo-Tagged Side-Chains on Proteins to Enable In Vitro and In-Cell Site-Specific Labeling. Bioconjugate Chemistry, 2020, 31, 1604-1610.	1.8	10
33	Selective modification of sulfamidate-containing peptides. Organic and Biomolecular Chemistry, 2020, 18, 6265-6275.	1.5	4
34	Dissecting the Essential Role of Anomeric β-Triflates in Glycosylation Reactions. Journal of the American Chemical Society, 2020, 142, 12501-12514.	6.6	52
35	Synthesis of <i>N</i> _{l²} -Substituted l̂±,l̂²-Diamino Acids via Stereoselective <i>N</i> -Michael Additions to a Chiral Bicyclic Dehydroalanine. Journal of Organic Chemistry, 2020, 85, 3134-3145. -	1.7	13
36	Stable Pyrroleâ€Linked Bioconjugates through Tetrazineâ€Triggered Azanorbornadiene Fragmentation. Angewandte Chemie - International Edition, 2020, 59, 6196-6200.	7.2	15

#	Article	IF	CITATIONS
37	Stable Pyrroleâ€Linked Bioconjugates through Tetrazineâ€Triggered Azanorbornadiene Fragmentation. Angewandte Chemie, 2020, 132, 6255-6259.	1.6	7
38	Synthesis and Structural Analysis of <i>Aspergillus fumigatus</i> Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and αâ€ <i>N</i> â€Acetyl Galactosamine Linkages. Angewandte Chemie - International Edition, 2020, 59, 12746-12750.	7.2	28
39	Impact of Aromatic Stacking on Glycoside Reactivity: Balancing CH/Ï€ and Cation/Ï€ Interactions for the Stabilization of Glycosyl-Oxocarbenium Ions. Journal of the American Chemical Society, 2019, 141, 13372-13384.	6.6	26
40	Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS Central Science, 2019, 5, 1417-1424.	5.3	18
41	Lanthionine Peptides by <i>S</i> -Alkylation with Substituted Cyclic Sulfamidates Promoted by Activated Molecular Sieves: Effects of the Sulfamidate Structure on the Yield. Journal of Organic Chemistry, 2019, 84, 14957-14964.	1.7	9
42	Elusive Dehydroalanine Derivatives with Enhanced Reactivity. ChemBioChem, 2019, 20, 1246-1250.	1.3	2
43	Azabicyclic vinyl sulfones for residue-specific dual protein labelling. Chemical Science, 2019, 10, 4515-4522.	3.7	23
44	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine‧elective Protein Modification and Charge Modulation. Angewandte Chemie - International Edition, 2019, 58, 6640-6644.	7.2	55
45	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine elective Protein Modification and Charge Modulation. Angewandte Chemie, 2019, 131, 6712-6716.	1.6	11
46	Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072.	6.6	51
47	Tetrazineâ€Triggered Release of Carboxylicâ€Acidâ€Containing Molecules for Activation of an Antiâ€inflammatory Drug. ChemBioChem, 2019, 20, 1541-1546.	1.3	22
48	Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nature Protocols, 2019, 14, 86-99.	5.5	49
49	Lysine Bioconjugation on Native Albumin with a Sulfonyl Acrylate Reagent. Methods in Molecular Biology, 2019, 2033, 25-37.	0.4	5
50	Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. ELife, 2019, 8, .	2.8	63
51	Chemo- and Regioselective Lysine Modification on Native Proteins. Journal of the American Chemical Society, 2018, 140, 4004-4017.	6.6	217
52	Cellâ€Penetrating Peptides Containing Fluorescent <scp>d</scp> â€Cysteines. Chemistry - A European Journal, 2018, 24, 7991-8000.	1.7	16
53	Tn Antigen Mimics by Ring-Opening of Chiral Cyclic Sulfamidates with Carbohydrate C1- <i>S</i> - and C1- <i>O</i> -Nucleophiles. Journal of Organic Chemistry, 2018, 83, 4973-4980.	1.7	12
54	A Late-Stage Synthetic Approach to Lanthionine-Containing Peptides via S-Alkylation on Cyclic Sulfamidates Promoted by Molecular Sieves. Organic Letters, 2018, 20, 7478-7482.	2.4	13

Gonzalo Jiménez-Osés

#	Article	IF	CITATIONS
55	Oxygen by Carbon Replacement at the Glycosidic Linkage Modulates the Sugar Conformation in Tn Antigen Mimics. ACS Omega, 2018, 3, 18142-18152.	1.6	5
56	Radicalâ€Mediated Thiolâ€Ene Strategy: Photoactivation of Thiolâ€Containing Drugs in Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 15832-15835.	7.2	25
57	Radicalâ€Mediated Thiolâ€Ene Strategy: Photoactivation of Thiolâ€Containing Drugs in Cancer Cells. Angewandte Chemie, 2018, 130, 16058-16061.	1.6	7
58	Substrate-assisted enzymatic formation of lysinoalanine in duramycin. Nature Chemical Biology, 2018, 14, 928-933.	3.9	25
59	The Conformation of the Mannopyranosyl Phosphate Repeating Unit of the Capsular Polysaccharide of <i>Neisseria meningitidis</i> Serogroup A and Its Carbaâ€Mimetic. European Journal of Organic Chemistry, 2018, 2018, 4548-4555.	1.2	19
60	Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 9952-9960.	6.6	33
61	1,3-Dipolar Cycloaddition Reactions of Low-Valent Rhodium and Iridium Complexes with Arylnitrile <i>N</i> -Oxides. Journal of Organic Chemistry, 2017, 82, 5096-5101.	1.7	7
62	Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angewandte Chemie - International Edition, 2017, 56, 243-247.	7.2	100
63	Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angewandte Chemie, 2017, 129, 249-253.	1.6	19
64	Oxidative Activation of C–S Bonds with an Electropositive Nitrogen Promoter Enables Orthogonal Glycosylation of Alkyl over Phenyl Thioglycosides. Organic Letters, 2017, 19, 5490-5493.	2.4	23
65	A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst. Journal of the American Chemical Society, 2017, 139, 13456-13465.	6.6	39
66	Metal-Free [2 + 2]-Photocycloaddition of (<i>Z</i>)-4-Aryliden-5(4 <i>H</i>)-Oxazolones as Straightforward Synthesis of 1,3-Diaminotruxillic Acid Precursors: Synthetic Scope and Mechanistic Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 8370-8381.	3.2	20
67	Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation. Journal of the American Chemical Society, 2017, 139, 18365-18375.	6.6	74
68	The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nature Communications, 2017, 8, 1959.	5.8	37
69	Substituent Effects on the Reactivity of Cyclic Tertiary Sulfamidates. Journal of Organic Chemistry, 2017, 82, 13250-13255.	1.7	10
70	The key role of Au-substrate interactions in catalytic gold subnanoclusters. Nature Communications, 2017, 8, 1657.	5.8	35
71	Multiple Mechanisms for the Thermal Decomposition of Metallaisoxazolin-5-ones from Computational Investigations. Journal of Organic Chemistry, 2017, 82, 8438-8443.	1.7	1
72	Computations Reveal That Electron-Withdrawing Leaving Groups Facilitate Intramolecular Conjugate Displacement Reactions by Negative Hyperconjugation. Journal of Organic Chemistry, 2016, 81, 4290-4294.	1.7	3

#	Article	IF	CITATIONS
73	Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. Journal of the American Chemical Society, 2016, 138, 6463-6474.	6.6	5
74	Tn Antigen Mimics Based on <i>sp</i> ² -Iminosugars with Affinity for an anti-MUC1 Antibody. Organic Letters, 2016, 18, 3890-3893.	2.4	32
75	A Minimal, Unstrained Sâ€Allyl Handle for Preâ€Targeting Diels–Alder Bioorthogonal Labeling in Live Cells. Angewandte Chemie, 2016, 128, 14903-14907.	1.6	6
76	Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nature Communications, 2016, 7, 13128.	5.8	141
77	A Minimal, Unstrained Sâ€Allyl Handle for Preâ€Targeting Diels–Alder Bioorthogonal Labeling in Live Cells. Angewandte Chemie - International Edition, 2016, 55, 14683-14687.	7.2	29
78	Bifunctional Chiral Dehydroalanines for Peptide Coupling and Stereoselective <i>S</i> -Michael Addition. Organic Letters, 2016, 18, 2796-2799.	2.4	29
79	A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nature Chemical Biology, 2016, 12, 240-246.	3.9	58
80	Evolution of a Unified Strategy for Complex Sesterterpenoids: Progress toward Astellatol and the Total Synthesis of (â^')â€Nitidasin. Chemistry - A European Journal, 2015, 21, 13646-13665.	1.7	29
81	Origins of stereoselectivity in evolved ketoreductases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7065-72.	3.3	104
82	Synthesis of Mixed α/β ^{2,2} -Peptides by Site-Selective Ring-Opening of Cyclic Quaternary Sulfamidates. Organic Letters, 2015, 17, 5804-5807.	2.4	18
83	Modulating Weak Interactions for Molecular Recognition: A Dynamic Combinatorial Analysis for Assessing the Contribution of Electrostatics to the Stability of CH‑'Ĩ€ Bonds in Water. Angewandte Chemie - International Edition, 2015, 54, 4344-4348.	7.2	28
84	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	7.8	32
85	Thermodynamic Evaluation of Aromatic CH/Ï€ Interactions and Rotational Entropy in a Molecular Rotor. Journal of the American Chemical Society, 2015, 137, 2175-2178.	6.6	50
86	Enantioselective Synthesis of Dialkylated <i>N</i> -Heterocycles by Palladium-Catalyzed Allylic Alkylation. Organic Letters, 2015, 17, 1082-1085.	2.4	54
87	Molecular Dynamics of the Diels–Alder Reactions of Tetrazines with Alkenes and N ₂ Extrusions from Adducts. Journal of the American Chemical Society, 2015, 137, 4749-4758.	6.6	53
88	A thorough experimental study of CH/π interactions in water: quantitative structure–stability relationships for carbohydrate/aromatic complexes. Chemical Science, 2015, 6, 6076-6085.	3.7	48
89	Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C–H Bond Functionalization. Journal of the American Chemical Society, 2015, 137, 9843-9854.	6.6	89
90	Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nature Chemistry, 2015, 7, 653-660.	6.6	100

#	Article	IF	CITATIONS
91	Molecular Dynamics Explorations of Active Site Structure in Designed and Evolved Enzymes. Accounts of Chemical Research, 2015, 48, 1080-1089.	7.6	86
92	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	5.2	69
93	Synthesis and Conformational Analysis of Hybrid α/βâ€Dipeptides Incorporating <i>S</i> â€Glycosylâ€Î² ^{2,2} â€Amino Acids. Chemistry - A European Journal, 2015, 21, 1156-1168.	1.7	15
94	Substrate control in stereoselective lanthionine biosynthesis. Nature Chemistry, 2015, 7, 57-64.	6.6	79
95	Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy. Journal of the American Chemical Society, 2014, 136, 15356-15365.	6.6	43
96	A Twist on Facial Selectivity of Hydride Reductions of Cyclic Ketones: Twist-Boat Conformers in Cyclohexanone, Piperidone, and Tropinone Reactions. Journal of Organic Chemistry, 2014, 79, 11609-11618.	1.7	21
97	The role of distant mutations and allosteric regulation on LovD active site dynamics. Nature Chemical Biology, 2014, 10, 431-436.	3.9	166
98	High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano, 2014, 8, 2609-2617.	7.3	91
99	Experimental and Theoretical Study of Gold(III)-Catalyzed Hydration of Alkynes. Organometallics, 2014, 33, 3823-3830.	1.1	27
100	Cycloadditions of Cyclohexynes and Cyclopentyne. Journal of the American Chemical Society, 2014, 136, 14706-14709.	6.6	79
101	Competition Between Concerted and Stepwise Dynamics in the Triplet Diâ€ï€â€Methane Rearrangement. Angewandte Chemie - International Edition, 2014, 53, 8664-8667.	7.2	28
102	Influence of Amino Acid Stereocenters on the Formation of Bicyclic <i>N</i> , <i>O</i> -Acetals. Journal of Organic Chemistry, 2014, 79, 2556-2563.	1.7	5
103	An Iterative, Bimodular Nonribosomal Peptide Synthetase that Converts Anthranilate and Tryptophan into Tetracyclic Asperlicins. Chemistry and Biology, 2013, 20, 870-878.	6.2	20
104	Confined organization of fullerene units along high polymer chains. Journal of Materials Chemistry C, 2013, 1, 5747.	2.7	16
105	Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano, 2013, 7, 2659-2668.	7.3	88
106	A Dynamic Combinatorial Approach for the Analysis of Weak Carbohydrate/Aromatic Complexes: Dissecting Facial Selectivity in CH/ï€ Stacking Interactions. Journal of the American Chemical Society, 2013, 135, 3347-3350.	6.6	46
107	Mechanistic Study of a Ru-Xantphos Catalyst for Tandem Alcohol Dehydrogenation and Reductive Aryl-Ether Cleavage. ACS Catalysis, 2013, 3, 963-974.	5.5	42
108	Mechanism of Alkoxy Groups Substitution by Grignard Reagents on Aromatic Rings and Experimental Verification of Theoretical Predictions of Anomalous Reactions. Journal of the American Chemical Society, 2013, 135, 6633-6642.	6.6	24

#	Article	IF	CITATIONS
109	Stereochemical Outcome of Copper-Catalyzed C–H Insertion Reactions. An Experimental and Theoretical Study. Journal of Organic Chemistry, 2013, 78, 5851-5857.	1.7	17
110	Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catalysis Today, 2012, 195, 76-82.	2.2	20
111	A Biomimetic Approach to Lanthionines. Organic Letters, 2012, 14, 334-337.	2.4	21
112	Forming Tertiary Organolithiums and Organocuprates from Nitrile Precursors and their Bimolecular Reactions with Carbon Electrophiles to Form Quaternary Carbon Stereocenters. Angewandte Chemie - International Edition, 2012, 51, 9581-9586.	7.2	26
113	Glycerol ketals: Synthesis and profits in biodiesel blends. Fuel, 2012, 94, 614-616.	3.4	61
114	A highly efficient, green and recoverable catalytic system for the epoxidation of fatty esters and biodiesel with H2O2. Applied Catalysis A: General, 2012, 425-426, 91-96.	2.2	25
115	A Domino Michael/Dieckmann Process as an Entry to α-(Hydroxymethyl)glutamic Acid. Journal of Organic Chemistry, 2011, 76, 6990-6996.	1.7	10
116	Accurate Calculation of Chemical Shifts in Highly Dynamic H ₂ @C ₆₀ through an Integrated Quantum Mechanics/Molecular Dynamics Scheme. Organic Letters, 2011, 13, 2528-2531.	2.4	11
117	Stereocontrolled Ring-Opening of a Hindered Sulfamidate with Nitrogen-Containing Aromatic Heterocycles: Synthesis of Chiral Quaternary Imidazole Derivatives. Journal of Organic Chemistry, 2011, 76, 4034-4042.	1.7	25
118	Fatty acid derivatives and their use as CFPP additives in biodiesel. Bioresource Technology, 2011, 102, 2590-2594.	4.8	42
119	Can Enantioselectivity be Computed in Enthalpic Barrierless Reactions? The Case of Cu ^I atalyzed Cyclopropanation of Alkenes. Chemistry - A European Journal, 2011, 17, 529-539.	1.7	14
120	Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. Journal of the American Chemical Society, 2010, 132, 12074-12090.	6.6	55
121	Steric Control of α- and β-Alkylation of Azulenone Intermediates in a Guanacastepene A Synthesis. Journal of Organic Chemistry, 2010, 75, 762-766.	1.7	18
122	Stereoselectivity induced by support confinement effects. Aza-pyridinoxazolines: A new family of C1-symmetric ligands for copper-catalyzed enantioselective cyclopropanation reactions. Dalton Transactions, 2010, 39, 2098.	1.6	13
123	A Novel Multistep Mechanism for the Stereocontrolled Ring Opening of Hindered Sulfamidates: Mild, Green, and Efficient Reactivity with Alcohols. Chemistry - A European Journal, 2009, 15, 9810-9823.	1.7	23
124	Insights into the Geometrical Features Underlying βâ€ <i>O</i> â€GlcNAc Glycosylation: Water Pockets Drastically Modulate the Interactions between the Carbohydrate and the Peptide Backbone. Chemistry - A European Journal, 2009, 15, 7297-7301.	1.7	29
125	The unusual reactivity of benzene and monosubstituted benzenes towards tetracyanoethylene oxide: a theoretical study. New Journal of Chemistry, 2009, 33, 471-478.	1.4	2
126	Highly chemoselective reactions on hindered sulfamidates with oxygenated nucleophiles. Tetrahedron: Asymmetry, 2008, 19, 443-449.	1.8	22

Gonzalo Jiménez-Osés

#	Article	IF	CITATIONS
127	Nonâ€natural Amino Acids as Modulating Agents of the Conformational Space of Model Glycopeptides. Chemistry - A European Journal, 2008, 14, 7042-7058.	1.7	24
128	Mechanistic insights on the site selectivity in successive 1,3-dipolar cycloadditions to meso-tetraarylporphyrins. Tetrahedron, 2008, 64, 7937-7943.	1.0	28
129	α-Alkylation versus retro-O-Michael/γ-alkylation of bicyclic N,O-acetals: an entry to α-methylthreonine. Tetrahedron: Asymmetry, 2008, 19, 2829-2834.	1.8	10
130	Surface Confinement Effects on Enantioselective Cyclopropanation. Reactions with Supported Chiral 8-Oxazolinylquinolineâ^Copper Complexes. Organometallics, 2008, 27, 2246-2251.	1.1	28
131	Role of the Countercation in Diastereoselective Alkylations of Pyramidalized Bicyclic Serine Enolates. An Easy Approach to α-Benzylserine. Journal of Organic Chemistry, 2007, 72, 5399-5402.	1.7	28
132	Serine versus Threonine Glycosylation:  The Methyl Group Causes a Drastic Alteration on the Carbohydrate Orientation and on the Surrounding Water Shell. Journal of the American Chemical Society, 2007, 129, 9458-9467.	6.6	127
133	QM/MM Modeling of Enantioselective Pybox–Ruthenium- and Box–Copper-Catalyzed Cyclopropanation Reactions: Scope, Performance, and Applications to Ligand Design. Chemistry - A European Journal, 2007, 13, 4064-4073.	1.7	43
134	Theoretical Evidence for Pyramidalized Bicyclic Serine Enolates in Highly Diastereoselective Alkylations. Chemistry - A European Journal, 2007, 13, 4840-4848.	1.7	36
135	Mechanistic study of the ring-size modulation in Michael–Dieckmann type reactions of 2-acylaminoacrylates with ketene diethyl acetal. New Journal of Chemistry, 2007, 31, 224-229.	1.4	9
136	Conformational Analysis of 2-Substituted Cyclobutane-α-amino Acid Derivatives. A Synergistic Experimental and Computational Study. Journal of Organic Chemistry, 2006, 71, 1869-1878.	1.7	19
137	New Insights into α-GalNAcâ^'Ser Motif:  Influence of Hydrogen Bonding versus Solvent Interactions on the Preferred Conformation. Journal of the American Chemical Society, 2006, 128, 14640-14648.	6.6	78
138	SN2 Reaction of Sulfur Nucleophiles with Hindered Sulfamidates:Â Enantioselective Synthesis of α-Methylisocysteine. Journal of Organic Chemistry, 2006, 71, 1692-1695.	1.7	32
139	Stereoselective Synthesis of Orthogonally Protected α-Methylnorlanthionine. Organic Letters, 2006, 8, 2855-2858.	2.4	38
140	SN2 vs E2 on Quaternary Centers: An Easy Approach to Chiral β2,2-Amino Acids from Cyclic Sulfamidates. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1459-1460.	0.8	5
141	A Convenient Enantioselective Synthesis of (S)-α-Trifluoromethylisoserine. Journal of Organic Chemistry, 2005, 70, 5721-5724.	1.7	28
142	New syntheses of enantiopure 2-methyl isoserines. Tetrahedron: Asymmetry, 2004, 15, 131-137.	1.8	12
143	SN2 vs. E2 on quaternary centres: an application to the synthesis of enantiopure β2,2-amino acids. Chemical Communications, 2004, , 980-981.	2.2	47
144	Conformational analysis of N-Boc-N,O-isopropylidene-α-serinals. A combined DFT and NMR study. Tetrahedron, 2003, 59, 5713-5718.	1.0	10

#	Article	IF	CITATIONS
145	Chapter 4. Computational Design of Protein Function. Chemical Biology, 0, , 87-107.	0.1	6