
Jerzy L Kostecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7231119/publications.pdf Version: 2024-02-01

IEDZY L KOSTECKI

#	Article	IF	CITATIONS
1	Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3298-3310.	4.0	71
2	Desktop water window microscope using a double-stream gas puff target source. Applied Physics B: Lasers and Optics, 2015, 118, 573-578.	2.2	48
3	A 50nm spatial resolution EUV imaging–resolution dependence on object thickness and illumination bandwidth. Optics Express, 2011, 19, 9541.	3.4	45
4	Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Applied Physics B: Lasers and Optics, 2013, 111, 239-247.	2.2	35
5	Sub 1-μm resolution "water-window―microscopy using a compact, laser-plasma SXR source based on a double stream gas-puff target. Nuclear Instruments & Methods in Physics Research B, 2013, 311, 42-46.	1.4	27
6	A comparison of the remineralizing potential of dental restorative materials by analyzing their fluoride release profiles. Advances in Clinical and Experimental Medicine, 2019, 28, 815-823.	1.4	20
7	Extreme ultraviolet tomography using a compact laser–plasma source for 3D reconstruction of low density objects. Optics Letters, 2014, 39, 532.	3.3	14
8	Compact laser plasma EUV source based on a gas puff target for metrology. , 2003, , .		12
9	Deposition and optimization of thin lead layers for superconducting accelerator photocathodes. Physica Scripta, 2014, T161, 014071.	2.5	6
10	Surface changes of solids under intense EUV irradiation using a laser-plasma source. Proceedings of SPIE, 2009, , .	0.8	5
11	Morphological and Optical Characterization of Colored Nanotubular Anodic Titanium Oxide Made in an Ethanol-Based Electrolyte. Materials, 2021, 14, 6992.	2.9	5
12	<title>Debrisless laser-produced x-ray source with a gas puff target</title> . , 1996, 2723, 310.		4
13	<title>Formation of elongated laser sparks in gas puff targets by nanosecond laser pulses</title> . , 1997, 3156, 296.		3
14	<title>Characterization and optimization of a laser-produced x-ray source with a double-stream gas puff target</title> . , 2001, , .		3
15	Laser plasma sources of soft X-rays and extreme ultraviolet (EUV) for application in science and technology. , 2014, , .		3
16	Fresnel zone plate telescope for condenser alignment in water-window microscope. Journal of Optics (United Kingdom), 2015, 17, 055606.	2.2	3
17	Wide band laser-plasma soft X-ray source using a gas puff target for direct photo-etching of polymers. , 2005, 5958, 279.		2
18	Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for technology, biomedical, and metrology applications. , 2008, , .		2

2

Jerzy L Kostecki

#	Article	IF	CITATIONS
19	Nanoscale imaging using a compact laser plasma EUV source. , 2012, , .		2
20	Water-window microscopy using compact, laser-plasma source based on Ar/He double stream gas-puff target. Proceedings of SPIE, 2013, , .	0.8	2
21	Tomographic imaging using a compact soft X-ray microscope based on a laser plasma light source. , 2019, , .		2
22	2-D nanometer thickness mapping applying a reduced bias soft X-ray NEXAFS approach. Optics Express, 2020, 28, 22478.	3.4	2
23	Demonstration of Near Edge X-ray Absorption Fine Structure Spectroscopy of Transition Metals Using Xe/He Double Stream Gas Puff Target Soft X-ray Source. Materials, 2021, 14, 7337.	2.9	2
24	<title>Application of laser plasma soft x-ray and EUV sources in micro- and nanotechnology</title> . , 2006, 6598, 90.		1
25	Micro- and nanoprocessing of organic polymers using a compact laser plasma EUV source equipped with EUV optical systems. Proceedings of SPIE, 2007, , .	0.8	1
26	Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector. , 2007, , .		1
27	X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses. , 2012, , .		1
28	EUV optics in photoionization experiments. , 2013, , .		1
29	EUV induced ablation and surface modification of poly(vinylidene fluoride) irradiated in vacuum or gaseous environment. Proceedings of SPIE, 2013, , .	0.8	1
30	Extreme ultraviolet and soft X-ray imaging using compact laser-plasma sources based on a double stream gas-puff target. Photonics Letters of Poland, 2013, 5, .	0.4	1
31	Laser systems for generation of x-ray radiation. , 2000, , .		0
32	Laser plasma radiation sources based on a laser-irradiated gas puff target for x-ray and EUV lithography technologies. , 2002, , .		0
33	Spectral measurement of soft x-ray and EUV emissions from a laser-irradiated gas puff target using a transmission grating spectrometer. , 2003, 5064, 91.		Ο
34	Passively Q-switched nanosecond pulse-train Nd:YAG laser system. , 2005, , .		0
35	Elongated high-density gas puff target for experiments on laser-driven x-ray lasers. , 2005, , .		Ο
36	Micro- and nanoprocessing of organic polymers using a laser plasma XUV source. , 2006, 6346, 423.		0

Jerzy L Kostecki

#	Article	IF	Citations
37	Recent advancements in technology of compact laser plasma EUV sources. Proceedings of SPIE, 2010, , .	0.8	0
38	Nanoscale imaging and optimization of a compact "water window" SXR microscope. Proceedings of SPIE, 2015, , .	0.8	0
39	A compact "water-window―microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics. , 2015, , .		0
40	Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology. Proceedings of SPIE, 2015, , .	0.8	0
41	Optoelectronic methods in potential application in monitoring of environmental conditions. Proceedings of SPIE, 2016, , .	0.8	0
42	Investigation of low temperature plasmas induced using laser-produced plasma EUV sources. , 2018, , .		0