
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723052/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Presentâ€day plate motions. Journal of Geophysical Research, 1978, 83, 5331-5354.                                                                                        | 3.3  | 1,983     |
| 2  | Composition and development of the continental tectosphere. Nature, 1978, 274, 544-548.                                                                                  | 13.7 | 754       |
| 3  | Numerical Modelling of Instantaneous Plate Tectonics. Geophysical Journal International, 1974, 36, 541-576.                                                              | 1.0  | 726       |
| 4  | The continental tectosphere. Reviews of Geophysics, 1975, 13, 1-12.                                                                                                      | 9.0  | 599       |
| 5  | Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)The Time-Independent Model.<br>Bulletin of the Seismological Society of America, 2014, 104, 1122-1180. | 1.1  | 424       |
| 6  | Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Secondâ€Order Statistics.<br>Journal of Geophysical Research, 1988, 93, 13589-13608.          | 3.3  | 405       |
| 7  | Structure and Formation of the Continental Tectosphere. Journal of Petrology, 1988, Special_Volume, 11-37.                                                               | 1.1  | 334       |
| 8  | CyberShake: A Physics-Based Seismic Hazard Model for Southern California. Pure and Applied<br>Geophysics, 2011, 168, 367-381.                                            | 0.8  | 326       |
| 9  | Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 1982, 298, 609-613.                                                                            | 13.7 | 306       |
| 10 | Slab penetration into the lower mantle. Journal of Geophysical Research, 1984, 89, 3031-3049.                                                                            | 3.3  | 269       |
| 11 | Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest<br>Pacific. Journal of Geophysical Research, 1986, 91, 3573-3589.      | 3.3  | 265       |
| 12 | Space geodetic measurement of crustal deformation in central and southern California, 1984–1992.<br>Journal of Geophysical Research, 1993, 98, 21677-21712.              | 3.3  | 247       |
| 13 | The present-day motions of the Caribbean Plate. Journal of Geophysical Research, 1975, 80, 4433-4439.                                                                    | 3.3  | 246       |
| 14 | Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). Bulletin of the Seismological<br>Society of America, 2009, 99, 2053-2107.                           | 1.1  | 239       |
| 15 | Mantle layering from <i>ScS</i> reverberations: 3. The upper mantle. Journal of Geophysical Research, 1991, 96, 19781-19810.                                             | 3.3  | 232       |
| 16 | Mantle layering from <i>ScS</i> reverberations: 2. The transition zone. Journal of Geophysical Research, 1991, 96, 19763-19780.                                          | 3.3  | 230       |
| 17 | Lehmann Discontinuity as the Base of an Anisotropic Layer Beneath Continents. Science, 1995, 268, 1468-1471.                                                             | 6.0  | 220       |
| 18 | Full 3D Tomography for the Crustal Structure of the Los Angeles Region. Bulletin of the Seismological Society of America, 2007, 97, 1094-1120.                           | 1.1  | 206       |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Earthquake Predictability, Brick by Brick. Seismological Research Letters, 2006, 77, 3-6.                                                                                                                       | 0.8  | 201       |
| 20 | Fullâ€3â€D tomography for crustal structure in Southern California based on the scatteringâ€integral and<br>the adjointâ€wavefield methods. Journal of Geophysical Research: Solid Earth, 2014, 119, 6421-6451. | 1.4  | 195       |
| 21 | Composition and Evolution of the Mantle and Core. Science, 1971, 171, 1103-1112.                                                                                                                                | 6.0  | 193       |
| 22 | Community Fault Model (CFM) for Southern California. Bulletin of the Seismological Society of America, 2007, 97, 1793-1802.                                                                                     | 1.1  | 188       |
| 23 | Three-dimensional Frechet differential kernels for seismicdelay times. Geophysical Journal<br>International, 2000, 141, 558-576.                                                                                | 1.0  | 187       |
| 24 | Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.<br>Nature, 2005, 434, 457-461.                                                                              | 13.7 | 185       |
| 25 | Longâ€Term Timeâ€Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast<br>(UCERF3). Bulletin of the Seismological Society of America, 2015, 105, 511-543.                        | 1.1  | 184       |
| 26 | Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. , 1979, , 1-14.                                                                                        |      | 175       |
| 27 | Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions. Journal of Geophysical Research, 1987, 92, 4798-4804.                                                       | 3.3  | 172       |
| 28 | Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research, 1996, 101, 22291-22309.                                                                                   | 3.3  | 170       |
| 29 | Aspherical structure of the coreâ€mantle boundary from <i>PKP</i> travel times. Geophysical Research<br>Letters, 1986, 13, 1497-1500.                                                                           | 1.5  | 167       |
| 30 | A procedure for estimating lateral variations from low-frequency eigenspectra data. Geophysical<br>Journal International, 1978, 52, 441-455.                                                                    | 1.0  | 153       |
| 31 | Unified Structural Representation of the southern California crust and upper mantle. Earth and Planetary Science Letters, 2015, 415, 1-15.                                                                      | 1.8  | 149       |
| 32 | Testing alarm-based earthquake predictions. Geophysical Journal International, 2008, 172, 715-724.                                                                                                              | 1.0  | 148       |
| 33 | Generalized seismological data functionals. Geophysical Journal International, 1992, 111, 363-390.                                                                                                              | 1.0  | 146       |
| 34 | Seamount statistics in the Pacific Ocean. Journal of Geophysical Research, 1988, 93, 2899-2918.                                                                                                                 | 3.3  | 145       |
| 35 | Optimal estimation of scalar seismic moment. Geophysical Journal of the Royal Astronomical Society, 1982, 70, 755-787.                                                                                          | 0.2  | 142       |
| 36 | Seismological structure of the upper mantle: a regional comparison of seismic layering. Physics of the<br>Earth and Planetary Interiors, 1999, 110, 21-41.                                                      | 0.7  | 138       |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Searching for slow and silent earthquakes using free oscillations. Journal of Geophysical Research, 1990, 95, 2485-2510.                                                                                                                | 3.3  | 132       |
| 38 | Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature, 2009, 459, 978-982.                                                                                                                              | 13.7 | 129       |
| 39 | Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International, 2007, 170, 175-181.                                                                   | 1.0  | 126       |
| 40 | How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth?. Geophysical Journal International, 2000, 141, 374-390.                                                | 1.0  | 125       |
| 41 | A velocity anomaly in the lower mantle. Journal of Geophysical Research, 1974, 79, 2679-2685.                                                                                                                                           | 3.3  | 119       |
| 42 | Totalâ€moment spectra of fourteen large earthquakes. Journal of Geophysical Research, 1983, 88,<br>3273-3293.                                                                                                                           | 3.3  | 119       |
| 43 | Predominance of Unilateral Rupture for a Clobal Catalog of Large Earthquakes. Bulletin of the Seismological Society of America, 2002, 92, 3309-3317.                                                                                    | 1.1  | 115       |
| 44 | Operational Earthquake Forecasting: Some Thoughts on Why and How. Seismological Research<br>Letters, 2010, 81, 571-574.                                                                                                                 | 0.8  | 114       |
| 45 | The ShakeOut earthquake scenario: Verification of three simulation sets. Geophysical Journal<br>International, 2010, 180, 375-404.                                                                                                      | 1.0  | 112       |
| 46 | Seismicity in Deep Gold Mines of South Africa: Implications for Tectonic Earthquakes. Bulletin of the<br>Seismological Society of America, 2002, 92, 1766-1782.                                                                         | 1.1  | 110       |
| 47 | Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models.<br>Bulletin of the Seismological Society of America, 2005, 95, 2066-2080.                                                             | 1.1  | 110       |
| 48 | Scalable Earthquake Simulation on Petascale Supercomputers. , 2010, , .                                                                                                                                                                 |      | 110       |
| 49 | How Thick Are the Continents?. Journal of Geophysical Research, 1987, 92, 14007-14026.                                                                                                                                                  | 3.3  | 107       |
| 50 | A Spatiotemporal Clustering Model for the Third Uniform California Earthquake Rupture Forecast<br>(UCERF3â€ETAS): Toward an Operational Earthquake Forecast. Bulletin of the Seismological Society of<br>America, 2017, 107, 1049-1081. | 1.1  | 107       |
| 51 | Operational Earthquake Forecasting Can Enhance Earthquake Preparedness. Seismological Research<br>Letters, 2014, 85, 955-959.                                                                                                           | 0.8  | 105       |
| 52 | First Results of the Regional Earthquake Likelihood Models Experiment. Pure and Applied Geophysics,<br>2010, 167, 859-876.                                                                                                              | 0.8  | 101       |
| 53 | Crustal and upper mantle structure from <i>S<sub>p</sub></i> phases. Journal of Geophysical<br>Research, 1975, 80, 1504-1518.                                                                                                           | 3.3  | 100       |
| 54 | High-resolution, two-dimensional vertical tomography of the central Pacific mantle<br>usingScSreverberations and frequency-dependent travel times. Journal of Geophysical Research, 1998,<br>103, 17933-17971.                          | 3.3  | 98        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Teleseismic Search for Slow Precursors to Large Earthquakes. Science, 1994, 266, 1547-1551.                                                                                         | 6.0  | 96        |
| 56 | Broadband simulations for M <sub>w</sub> 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed. Geophysical Research Letters, 2008, 35, .                | 1.5  | 95        |
| 57 | Earth structure from fundamental and higher-mode waveform analysis. Geophysical Journal<br>International, 1983, 75, 759-797.                                                        | 1.0  | 94        |
| 58 | Lateral heterogeneity of the upper mantle determined from the travel times of multiple <i>ScS</i> .<br>Journal of Geophysical Research, 1976, 81, 6307-6320.                        | 3.3  | 93        |
| 59 | Geodetic measurement of tectonic deformation in the Santa Maria Fold and Thrust Belt, California.<br>Journal of Geophysical Research, 1990, 95, 2679-2699.                          | 3.3  | 93        |
| 60 | Distribution of seismicity across strikeâ€slip faults in California. Journal of Geophysical Research, 2010,<br>115, .                                                               | 3.3  | 93        |
| 61 | Strain Green's Tensors, Reciprocity, and Their Applications to Seismic Source and Structure Studies.<br>Bulletin of the Seismological Society of America, 2006, 96, 1753-1763.      | 1.1  | 91        |
| 62 | A study of mantle layering beneath the western Pacific. Journal of Geophysical Research, 1989, 94,<br>5787-5813.                                                                    | 3.3  | 90        |
| 63 | Stability and dynamics of the continental tectosphere. Lithos, 1999, 48, 115-133.                                                                                                   | 0.6  | 86        |
| 64 | Physics of multiscale convection in Earth's mantle: Onset of sublithospheric convection. Journal of<br>Geophysical Research, 2003, 108, .                                           | 3.3  | 85        |
| 65 | Bayesian Forecast Evaluation and Ensemble Earthquake Forecasting. Bulletin of the Seismological<br>Society of America, 2012, 102, 2574-2584.                                        | 1.1  | 85        |
| 66 | Lateral heterogeneity of the upper mantle determined from the travel times of <i>ScS</i> . Journal of Geophysical Research, 1975, 80, 1474-1484.                                    | 3.3  | 84        |
| 67 | Structure of the Kaapvaal Craton from surface waves. Geophysical Research Letters, 2001, 28, 2489-2492.                                                                             | 1.5  | 84        |
| 68 | TeraShake2: Spontaneous Rupture Simulations of Mw 7.7 Earthquakes on the Southern San Andreas<br>Fault. Bulletin of the Seismological Society of America, 2008, 98, 1162-1185.      | 1.1  | 84        |
| 69 | Density and size distribution of seamounts in the eastern Pacific inferred from wideâ€beam sounding data. Journal of Geophysical Research, 1983, 88, 10508-10518.                   | 3.3  | 82        |
| 70 | Regional Earthquake Likelihood Models I: First-Order Results. Bulletin of the Seismological Society of America, 2013, 103, 787-798.                                                 | 1.1  | 82        |
| 71 | The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science. Concurrency Computation Practice and Experience, 2010, 22, 1836-1847. | 1.4  | 81        |
| 72 | Lateral heterogeneity and mantle dynamics. Nature, 1975, 257, 745-750.                                                                                                              | 13.7 | 80        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mantle layering from <i>ScS</i> reverberations: 1. Waveform inversion of zerothâ€order reverberations. Journal of Geophysical Research, 1991, 96, 19749-19762.    | 3.3 | 79        |
| 74 | The Collaboratory for the Study of Earthquake Predictability: Achievements and Priorities.<br>Seismological Research Letters, 2018, 89, 1305-1313.                | 0.8 | 79        |
| 75 | A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3). Seismological<br>Research Letters, 2017, 88, 1259-1267.                     | 0.8 | 78        |
| 76 | Mapping the Tonga Slab. Journal of Geophysical Research, 1991, 96, 14403-14427.                                                                                   | 3.3 | 76        |
| 77 | Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth<br>structure. Geophysical Journal International, 1998, 133, 683-704. | 1.0 | 74        |
| 78 | Seismic constraints on the morphology of deep slabs. Journal of Geophysical Research, 1988, 93, 4773-4783.                                                        | 3.3 | 70        |
| 79 | Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data. Seismological Research Letters, 2015, 86, 39-47.       | 0.8 | 70        |
| 80 | Testing for ontological errors in probabilistic forecasting models of natural systems. Proceedings of the United States of America, 2014, 111, 11973-11978.       | 3.3 | 69        |
| 81 | Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions. Science, 1993, 261, 1427-1431.                         | 6.0 | 65        |
| 82 | Seismicity and tectonic stress in the south entral Pacific. Journal of Geophysical Research, 1980, 85,<br>6479-6495.                                              | 3.3 | 64        |
| 83 | Teleseismic inversion for the second-degree moments of earthquake space-time distributions.<br>Geophysical Journal International, 2001, 145, 661-678.             | 1.0 | 64        |
| 84 | Multiple ScS travel times in the western Pacific: Implications for mantle heterogeneity. Journal of<br>Geophysical Research, 1980, 85, 853-861.                   | 3.3 | 62        |
| 85 | Estimation of the attenuation operator for multiple ScS waves. Geophysical Research Letters, 1977, 4, 167-170.                                                    | 1.5 | 61        |
| 86 | The Deep Structure of the Continents. Scientific American, 1979, 240, 92-107.                                                                                     | 1.0 | 60        |
| 87 | Fundamental spheroidal mode observations of aspherical heterogeneity. Geophysical Journal of the<br>Royal Astronomical Society, 1981, 64, 605-634.                | 0.2 | 60        |
| 88 | The SCEC Unified Community Velocity Model Software Framework. Seismological Research Letters, 2017, 88, 1539-1552.                                                | 0.8 | 60        |
| 89 | The Potential Uses of Operational Earthquake Forecasting: Table 1. Seismological Research Letters, 2016, 87, 313-322.                                             | 0.8 | 51        |
| 90 | Structural geology of the Earth's interior. Proceedings of the National Academy of Sciences of the<br>United States of America, 1979, 76, 4192-4200.              | 3.3 | 48        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The continental tectosphere and Earth's long-wavelength gravity field. Lithos, 1999, 48, 135-152.                                                                                                     | 0.6 | 48        |
| 92  | Scaling up workflow-based applications. Journal of Computer and System Sciences, 2010, 76, 428-446.                                                                                                   | 0.9 | 48        |
| 93  | The Forecasting Skill of Physicsâ€Based Seismicity Models during the 2010–2012 Canterbury, New<br>Zealand, Earthquake Sequence. Seismological Research Letters, 2018, 89, 1238-1250.                  | 0.8 | 47        |
| 94  | Some comments on tidal drag as a mechanism for driving plate motions. Journal of Geophysical Research, 1974, 79, 2141-2142.                                                                           | 3.3 | 46        |
| 95  | Mantle layering from <i>ScS</i> reverberations: 4. The lower mantle and coreâ€mantle boundary.<br>Journal of Geophysical Research, 1991, 96, 19811-19824.                                             | 3.3 | 42        |
| 96  | Physics of multiscale convection in Earth's mantle: Evolution of sublithospheric convection. Journal of Geophysical Research, 2004, 109, .                                                            | 3.3 | 42        |
| 97  | A physics-based earthquake simulator replicates seismic hazard statistics across California. Science<br>Advances, 2018, 4, eaau0688.                                                                  | 4.7 | 41        |
| 98  | The size distribution of Pacific Seamounts. Geophysical Research Letters, 1987, 14, 1119-1122.                                                                                                        | 1.5 | 39        |
| 99  | Managing Large-Scale Workflow Execution from Resource Provisioning to Provenance Tracking: The<br>CyberShake Example. , 2006, , .                                                                     |     | 39        |
| 100 | Observations of first-order mantle reverberations. Bulletin of the Seismological Society of America, 1987, 77, 1704-1717.                                                                             | 1.1 | 38        |
| 101 | Loss Estimates for a Puente Hills Blind-Thrust Earthquake in Los Angeles, California. Earthquake<br>Spectra, 2005, 21, 329-338.                                                                       | 1.6 | 37        |
| 102 | Rapid full-wave centroid moment tensor (CMT) inversion in a three-dimensional earth structure<br>model for earthquakes in Southern California. Geophysical Journal International, 2011, 186, 311-330. | 1.0 | 37        |
| 103 | Stochastic modeling of seafloor morphology: A parameterized Gaussian model. Geophysical Research<br>Letters, 1989, 16, 45-48.                                                                         | 1.5 | 35        |
| 104 | Further evidence for the compound nature of slow earthquakes: The Prince Edward Island earthquake of April 28, 1997. Journal of Geophysical Research, 2000, 105, 7819-7827.                           | 3.3 | 33        |
| 105 | Momentâ€ŧensor spectra of the 19 Sept 85 and 21 Sept 85 Michoacan, Mexico, earthquakes. Geophysical<br>Research Letters, 1986, 13, 609-612.                                                           | 1.5 | 32        |
| 106 | On the state of sublithospheric upper mantle beneath a supercontinent. Geophysical Journal<br>International, 2002, 149, 179-189.                                                                      | 1.0 | 31        |
| 107 | Farâ€field detection of slow precursors to fast seismic ruptures. Geophysical Research Letters, 1991, 18,<br>2019-2022.                                                                               | 1.5 | 30        |
| 108 | Seismic strain rate and deep slab deformation in Tonga. Journal of Geophysical Research, 1991, 96,<br>14429-14444.                                                                                    | 3.3 | 30        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Metrics for heterogeneous scientific workflows: A case study of an earthquake science application.<br>International Journal of High Performance Computing Applications, 2011, 25, 274-285. | 2.4 | 30        |
| 110 | Lowâ€frequency noise observations in the deep ocean. Journal of the Acoustical Society of America, 1986, 80, 633-645.                                                                      | 0.5 | 28        |
| 111 | Polarization anisotropy and fineâ€scale structure of the Eurasian Upper Mantle. Geophysical Research<br>Letters, 1988, 15, 824-827.                                                        | 1.5 | 28        |
| 112 | Seismic structure of the upper mantle beneath the western Philippine Sea. Physics of the Earth and Planetary Interiors, 1999, 110, 263-283.                                                | 0.7 | 28        |
| 113 | Testing plausible upper-mantle compositions using fine-scale models of the 410-km discontinuity.<br>Geophysical Research Letters, 1999, 26, 1641-1644.                                     | 1.5 | 28        |
| 114 | The Area Skill Score Statistic for Evaluating Earthquake Predictability Experiments. Pure and Applied<br>Geophysics, 2010, 167, 893-906.                                                   | 0.8 | 28        |
| 115 | How stratified is mantle convection?. Journal of Geophysical Research, 1997, 102, 7625-7646.                                                                                               | 3.3 | 26        |
| 116 | Structural sensitivities of finite-frequency seismic waves: a full-wave approach. Geophysical Journal<br>International, 2006, 165, 981-990.                                                | 1.0 | 26        |
| 117 | Toward Physics-Based Nonergodic PSHA: A Prototype Fully Deterministic Seismic Hazard Model for Southern California. Bulletin of the Seismological Society of America, 2021, 111, 898-915.  | 1.1 | 26        |
| 118 | On â€~steady-state' heat flow and the rheology of oceanic mantle. Geophysical Research Letters, 2002, 29, 13-1-13-4.                                                                       | 1.5 | 24        |
| 119 | Measuring Crustal Deformation in the American West. Scientific American, 1988, 259, 48-55.                                                                                                 | 1.0 | 22        |
| 120 | Highlights from the First Ten Years of the New Zealand Earthquake Forecast Testing Center.<br>Seismological Research Letters, 2018, 89, 1229-1237.                                         | 0.8 | 22        |
| 121 | Comparison of a stochastic seafloor model with SeaMARC II Bathymetry and Sea Beam data near the<br>East Pacific Rise 13°–15°N. Journal of Geophysical Research, 1991, 96, 3867-3885.       | 3.3 | 21        |
| 122 | Quantifying the distribution and transport of pelagic sediments on young abyssal hills. Geophysical<br>Research Letters, 1993, 20, 2203-2206.                                              | 1.5 | 21        |
| 123 | Onset of convection with temperature- and depth-dependent viscosity. Geophysical Research Letters, 2002, 29, 29-1-29-4.                                                                    | 1.5 | 21        |
| 124 | Mantle convection experiments with evolving plates. Geophysical Research Letters, 1995, 22, 2223-2226.                                                                                     | 1.5 | 20        |
| 125 | Pelagic sedimentation on rough seafloor topography 1. Forward Model. Journal of Geophysical<br>Research, 2001, 106, 30433-30449.                                                           | 3.3 | 20        |
| 126 | Reducing Time-to-Solution Using Distributed High-Throughput Mega-Workflows - Experiences from<br>SCEC CyberShake. , 2008, , .                                                              |     | 19        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Timeâ€Dependent Renewalâ€Model Probabilities When Date of Last Earthquake is Unknown. Bulletin of the<br>Seismological Society of America, 2015, 105, 459-463.                  | 1.1 | 19        |
| 128 | Stochastic analysis of mantle convection experiments using two-point correlation functions.<br>Geophysical Research Letters, 1994, 21, 305-308.                                 | 1.5 | 18        |
| 129 | Resolving fault plane ambiguity for small earthquakes. Geophysical Journal International, 2010, 181, 493-501.                                                                   | 1.0 | 18        |
| 130 | Effects of vertical boundaries on infinite Prandtl number thermal convection. Geophysical Journal<br>International, 2001, 147, 639-659.                                         | 1.0 | 17        |
| 131 | Stochastic analysis of shear-wave splitting length scales. Earth and Planetary Science Letters, 2007, 259, 526-540.                                                             | 1.8 | 17        |
| 132 | Characterization of mantle convection experiments using two-point correlation functions. Journal of Geophysical Research, 1995, 100, 6351-6365.                                 | 3.3 | 16        |
| 133 | Linear stability analysis of Richter rolls. Geophysical Research Letters, 2003, 30, .                                                                                           | 1.5 | 16        |
| 134 | Operational Earthquake Forecasting during the 2019 Ridgecrest, California, Earthquake Sequence with the UCERF3-ETAS Model. Seismological Research Letters, 2020, 91, 1567-1578. | 0.8 | 16        |
| 135 | Toward petascale earthquake simulations. Acta Geotechnica, 2009, 4, 79-93.                                                                                                      | 2.9 | 14        |
| 136 | Convergence depths of tectonic regions from an ensemble of global tomographic models. Journal of<br>Geophysical Research: Solid Earth, 2013, 118, 4196-4225.                    | 1.4 | 14        |
| 137 | Tectonic Regionalization of the Southern California Crust From Tomographic Cluster Analysis.<br>Journal of Geophysical Research: Solid Earth, 2019, 124, 11840-11865.           | 1.4 | 14        |
| 138 | An effective medium theory for three-dimensional elastic heterogeneities. Geophysical Journal<br>International, 2015, 203, 1343-1354.                                           | 1.0 | 13        |
| 139 | Enabling Very-Large Scale Earthquake Simulations on Parallel Machines. Lecture Notes in Computer<br>Science, 2007, , 46-53.                                                     | 1.0 | 13        |
| 140 | Source time function of the Great 1994 Bolivia Deep Earthquake by waveform and spectral inversions.<br>Geophysical Research Letters, 1995, 22, 2253-2256.                       | 1.5 | 12        |
| 141 | Visual Insights into High-Resolution Earthquake Simulations. IEEE Computer Graphics and Applications, 2007, 27, 28-34.                                                          | 1.0 | 12        |
| 142 | Stability and dynamics of the continental tectosphere. Developments in Geotectonics, 1999, 24, 115-133.                                                                         | 0.3 | 11        |
| 143 | Rupture dimensions of the 1998 Antarctic Earthquake from low-frequency waves. Geophysical<br>Research Letters, 2000, 27, 2305-2308.                                             | 1.5 | 11        |
| 144 | Perturbation kernels for generalized seismological data functionals (GSDF). Geophysical Journal<br>International, 2010, 183, 869-883.                                           | 1.0 | 11        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Experimental concepts for testing probabilistic earthquake forecasting and seismic hazard models.<br>Geophysical Journal International, 2018, 215, 780-798.                                              | 1.0 | 11        |
| 146 | Pelagic sedimentation on rough seafloor topography 2. Inversion results from the North Atlantic Acoustic Reverberation Corridor. Journal of Geophysical Research, 2001, 106, 30451-30473.                | 3.3 | 10        |
| 147 | Frequencyâ€Dependent Attenuation of <i>P</i> and <i>S</i> Waves in Southern California. Journal of Geophysical Research: Solid Earth, 2018, 123, 5814-5830.                                              | 1.4 | 10        |
| 148 | The TeraShake Computational Platform for Large-Scale Earthquake Simulations. Lecture Notes in Earth Sciences, 2009, , 229-277.                                                                           | 0.5 | 10        |
| 149 | Beyond Plate Tectonics: Looking at Plate Deformation with Space Geodesy. , 1988, , 341-350.                                                                                                              |     | 8         |
| 150 | A unified probabilistic framework for volcanic hazard and eruption forecasting. Natural Hazards and<br>Earth System Sciences, 2021, 21, 3509-3517.                                                       | 1.5 | 8         |
| 151 | First Results of the Regional Earthquake Likelihood Models Experiment. , 2010, , 5-22.                                                                                                                   |     | 7         |
| 152 | The continental tectosphere and Earth's long-wavelength gravity field. Developments in Geotectonics, 1999, 24, 135-152.                                                                                  | 0.3 | 5         |
| 153 | Varenna workshop report. Operational earthquake forecasting and decision making. Annals of Geophysics, 2015, 58, .                                                                                       | 0.5 | 5         |
| 154 | Stochastic representations of seismic anisotropy: transversely isotropic effective media models.<br>Geophysical Journal International, 2017, 209, 1831-1850.                                             | 1.0 | 4         |
| 155 | Representation of complex seismic sources by orthogonal moment-tensor fields. Geophysical Journal<br>International, 2019, 216, 1867-1889.                                                                | 1.0 | 4         |
| 156 | Effectiveâ€Medium Models of Inner ore Anisotropy. Journal of Geophysical Research: Solid Earth, 2018,<br>123, 5793-5813.                                                                                 | 1.4 | 3         |
| 157 | Lithosphere-asthenosphere boundary. Geology, 1976, 4, 770.                                                                                                                                               | 2.0 | 2         |
| 158 | Beyond Plate Tectonics: Looking at Plate Deformation with Space Geodesy. Symposium - International<br>Astronomical Union, 1988, 129, 341-350.                                                            | 0.1 | 2         |
| 159 | Reply [to "Comment on â€~Mantle layering from <i>ScS</i> reverberations, 2, The transition zone' by<br>Justin Revenaugh and Thomas H. Jordanâ€]. Journal of Geophysical Research, 1992, 97, 17549-17551. | 3.3 | 2         |
| 160 | Complexities of Transform Fault Plate Boundaries in the Oceans. Geodynamic Series, 2013, , 219-241.                                                                                                      | 0.1 | 2         |
| 161 | rvGAHP., 2017,,.                                                                                                                                                                                         |     | 2         |
| 162 | Stress–strain characterization of seismic source fields using moment measures of mechanism<br>complexity. Geophysical Journal International, 2021, 227, 591-616.                                         | 1.0 | 2         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The Area Skill Score Statistic for Evaluating Earthquake Predictability Experiments. , 2010, , 39-52.                                                                                |     | 2         |
| 164 | Reply [to "Comment on â€~Crustal and upper mantle structure from <i>Sp</i> phases' by Thomas H.<br>Jordan and L. Neil Frazerâ€]. Journal of Geophysical Research, 1980, 85, 381-382. | 3.3 | 1         |
| 165 | Some Speculations on Continental Evolution. , 1989, , 259-276.                                                                                                                       |     | 1         |
| 166 | Lateral variations in shear velocity and attenuation in the upper mantle. Tectonophysics, 1979, 56, 97.                                                                              | 0.9 | 0         |
| 167 | Scapegoat shocker. New Scientist, 2011, 211, 34-35.                                                                                                                                  | 0.0 | Ο         |
| 168 | Frank Press, A life of magnitude. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9138-9141.                                             | 3.3 | 0         |