Ramesh P Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7229701/publications.pdf

Version: 2024-02-01

218381 174990 3,087 53 26 52 h-index citations g-index papers 53 53 53 3926 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison Study of an Optimized Ultrasound-Based Method versus an Optimized Conventional Method for Agar Extraction, and Protein Co-Extraction, from Gelidium sesquipedale. Foods, 2022, 11, 805.	1.9	8
2	A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts, 2022, 12, 319.	1.6	64
3	Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application. Materials Letters, 2021, 285, 129100.	1.3	7
4	Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 696040.	2.0	53
5	Polyhydroxyalkanoate/Antifungal Polyene Formulations with Monomeric Hydroxyalkanoic Acids for Improved Antifungal Efficiency. Antibiotics, 2021, 10, 737.	1.5	12
6	Comparative Life Cycle Assessment of EPA and DHA Production from Microalgae and Farmed Fish. Clean Technologies, 2021, 3, 699-710.	1.9	4
7	Investigation of enzyme-assisted methods combined with ultrasonication under a controlled alkali pretreatment for agar extraction from Gelidium sesquipedale. Food Hydrocolloids, 2021, 120, 106905.	5.6	24
8	Robust process for high yield conversion of non-degradable polyethylene to a biodegradable plastic using a chemo-biotechnological approach. Waste Management, 2021, 135, 60-69.	3.7	23
9	Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme and Microbial Technology, 2020, 132, 109411.	1.6	18
10	Biodegradation of Poly (Butylene Succinate) (PBS)/Stearate Modified Magnesium-Aluminium Layered Double Hydroxide Composites under Marine Conditions Prepared via Melt Compounding. Molecules, 2020, 25, 5766.	1.7	17
11	Improved Surface Functional and Photocatalytic Properties of Hybrid ZnO-MoS2-Deposited Membrane for Photocatalysis-Assisted Dye Filtration. Membranes, 2020, 10, 106.	1.4	15
12	Green extraction of soluble dietary fibre from coffee silverskin: impact of ultrasound/microwaveâ€assisted extraction. International Journal of Food Science and Technology, 2020, 55, 2242-2250.	1.3	31
13	Polyhydroxyphenylvalerate/polycaprolactone nanofibers improve the life-span and mechanoresponse of human IPSC-derived cortical neuronal cells. Materials Science and Engineering C, 2020, 111, 110832.	3.8	9
14	Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110333.	2.5	8
15	Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. Journal of Biotechnology, 2019, 306, 9-15.	1.9	57
16	Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules, 2019, 129, 351-360.	3.6	33
17	Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. International Journal of Pharmaceutics, 2019, 566, 173-184.	2.6	31
18	Comparison of wet milling and dry milling routes for ibuprofen pharmaceutical crystals and their impact on pharmaceutical and biopharmaceutical properties. Powder Technology, 2018, 330, 228-238.	2.1	25

#	Article	IF	Citations
19	Surfactant-mediated hydrothermal pretreatment of Ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate production. Industrial Crops and Products, 2018, 111, 625-632.	2.5	29
20	Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environmental Science & End-of-Life Management of Plastic Pollution. Environmental Science & End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environmental Science & End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution.	4.6	339
21	Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Applied and Environmental Microbiology, 2016, 82, 6132-6140.	1.4	42
22	High cell density cultivation of <i>Pseudomonas putida</i> KT2440 using glucose without the need for oxygen enriched air supply. Biotechnology and Bioengineering, 2015, 112, 725-733.	1.7	53
23	Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresource Technology, 2015, 191, 45-52.	4.8	57
24	Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. Journal of Industrial and Engineering Chemistry, 2015, 23, 163-170.	2.9	57
25	Plant Oils and Products of Their Hydrolysis as Substrates for Polyhydroxyalkanoate Synthesis. Chemical and Biochemical Engineering Quarterly, 2015, 29, 123-133.	0.5	28
26	Castor Seed from Melkasa Agricultural Research Centre, East Showa, Ethiopia and it's biodiesel performance in Four Stroke Diesel Engine. International Journal of Renewable Energy Development, 2014, 3, 99-105.	1.2	5
27	Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. Microbiology (United) Tj ETQq $1\ 1\ 0.78$	43 1 047 gBT	「/Overlock 10
28	Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Applied Microbiology and Biotechnology, 2014, 98, 611-620.	1.7	68
29	Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 2014, 98, 4223-4232.	1.7	102
30	Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Applied Microbiology and Biotechnology, 2014, 98, 9217-9228.	1.7	21
31	Synthesis and photocatalytic application of ZnO nanoarrows. Materials Letters, 2014, 128, 404-407.	1.3	22
32	The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials, 2013, 34, 2710-2718.	5.7	55
33	Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresource Technology, 2013, 150, 202-209.	4.8	129
34	Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2013, 2, 8.	1.8	758
35	Saccharification of alkali treated biomass of Kans grass contributes higher sugar in contrast to acid treated biomass. Chemical Engineering Journal, 2013, 230, 36-47.	6.6	38
36	Carbon-Rich Wastes as Feedstocks for Biodegradable Polymer (Polyhydroxyalkanoate) Production Using Bacteria. Advances in Applied Microbiology, 2013, 84, 139-200.	1.3	147

#	Article	IF	Citations
37	Electrical conductivity of LTA-zeolite in the presence of poly(vinyl alcohol) and poly(vinyl) Tj ETQq1 1 0.784314 r	gB <u>T./</u> Overl	ock 10 Tf 50
38	Electrospun Nanomaterials: Biotechnology, Food, Water, Environment, and Energy. Conference Papers in Materials Science, 2013, 2013, 1-14.	0.1	11
39	Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	64
40	Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 2012, 95, 623-633.	1.7	110
41	Formulation of epoxy–polyester powder coatings containing silver-modified nanoclays and evaluation of their antimicrobial properties. Polymer Bulletin, 2012, 68, 1951-1963.	1.7	12
42	Synthesis, electrical and magnetotransport properties of polypyrrole-MWCNT nanocomposite. Solid State Communications, 2012, 152, 13-18.	0.9	37
43	Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. Journal of Applied Physics, 2011, 109, 033707.	1.1	26
44	Synthesis and characterization of polyaniline/carbon nanotube composites. Journal of Applied Polymer Science, 2011, 119, 1016-1025.	1.3	39
45	Activation behavior and dielectric relaxation in polyvinyl alcohol and multiwall carbon nanotube composite films. Solid State Communications, 2011, 151, 754-758.	0.9	26
46	Ferromagnetic Behaviour of Nickel Contacted Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 2606-2610.	0.9	0
47	Characterization and electrical transport properties of polyaniline and multiwall carbon nanotube composites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1767-1775.	2.4	21
48	Synthesis, magnetic, optical, and electrical transport properties of the nanocomposites of polyaniline with some rare earth chlorides. Journal of Applied Physics, 2010, 108, 073701.	1.1	12
49	Characterization of melanin-overproducing transposon mutants of <i>Pseudomonas putida </i> F6. FEMS Microbiology Letters, 2009, 298, 174-183.	0.7	20
50	Fabrication and field emission property studies of vertically aligned multiwalled carbon nanotubes grown by double plasma chemical vapour deposition technique. Diamond and Related Materials, 2009, 18, 967-971.	1.8	6
51	The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 2008, 80, 665-673.	1.7	58
52	Up-Cycling of PET (Polyethylene Terephthalate) to the Biodegradable Plastic PHA (Polyhydroxyalkanoate). Environmental Science & Environmental Science	4.6	191
53	Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Solid Films, 2006, 494, 128-132.	0.8	42