Cédric Samuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7229467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rheological Considerations in Processing Self-Reinforced Thermoplastic Polymer Nanocomposites: A Review. Polymers, 2022, 14, 637.	2.0	8
2	(Nano)Fibrillar morphology development in biobased poly(butylene <scp>succinateâ€coâ€adipate</scp>)/poly(amideâ€11) blown films. Polymer Engineering and Science, 2021, 61, 1324-1337.	1.5	4
3	Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications. Applied System Innovation, 2021, 4, 57.	2.7	14
4	Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14946-14958.	3.2	11
5	Compatibility in biobased poly(L″actide)/polyamide binary blends: From meltâ€state interfacial tensions to (thermo)mechanical properties. Journal of Applied Polymer Science, 2020, 137, 48440.	1.3	7
6	Role of Compatibilizer in Improving the Properties of PLA/PA12 Blends. Frontiers in Materials, 2020, 7, .	1.2	9
7	Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(vinylidene difluoride) Blends with Poly(methyl methacrylate) Copolymers Containing Ionizable Moieties. ACS Applied Polymer Materials, 2020, 2, 3766-3780.	2.0	12
8	Enhanced (thermo)mechanical properties in biobased poly(<scp>l</scp> â€ <scp>lactide</scp>)/poly(amideâ€12) blends using high shear extrusion processing without compatibilizers. Polymer Engineering and Science, 2020, 60, 1902-1916.	1.5	10
9	Poly(ethylene oxide)/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) Blends: An Efficient Route to Highly Conductive Thermoplastic Materials for Melt-State Extrusion Processing ?. ACS Applied Polymer Materials, 2020, 2, 2366-2379.	2.0	16
10	Melt compatibility between polyolefins: Evaluation and reliability of interfacial/surface tensions obtained by various techniques. Polymer Testing, 2019, 78, 105995.	2.3	9
11	Dielectric and mechanical optimization properties of porous poly(ethyleneâ€ <i>co</i> â€vinyl acetate) copolymer films for pseudoâ€piezoelectric effect. Polymer Engineering and Science, 2019, 59, 1455-1461.	1.5	19
12	Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018, 14, 4591-4602.	1.2	36
13	Peculiar effect of stereocomplexes on the photochemical ageing of PLA/PMMA blends. Polymer Degradation and Stability, 2018, 150, 92-104.	2.7	10
14	Design of biobased poly(butylene succinate) foams by singleâ€screw extrusion: Identification of relevant rheological parameters controlling foam morphologies. Polymer Engineering and Science, 2018, 58, 503-512.	1.5	6
15	Development of nanofibrillar morphologies in poly(<scp>l</scp> -lactide)/poly(amide) blends: role of the matrix elasticity and identification of the critical shear rate for the nodular/fibrillar transition. RSC Advances, 2018, 8, 22023-22041.	1.7	25
16	Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids. Macromolecules, 2017, 50, 2896-2905.	2.2	43
17	Green and Efficient Synthesis of Dispersible Cellulose Nanocrystals in Biobased Polyesters for Engineering Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2517-2527.	3.2	58
18	Design of highly tough poly(<scp>l</scp> â€lactide)â€based ternary blends for automotive applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	39

Cédric Samuel

#	Article	IF	CITATIONS
19	Biobased poly(lactides)/poly(methyl methacrylate) blends: A perfect association for durable and smart applications?. AIP Conference Proceedings, 2015, , .	0.3	6
20	Polylactide/Poly(ω-hydroxytetradecanoic acid) Reactive Blending: A Green Renewable Approach to Improving Polylactide Properties. Biomacromolecules, 2015, 16, 1818-1826.	2.6	51
21	Highly efficient metal-free organic catalysts to design new Environmentally-friendly starch-based blends. Journal of Polymer Science Part A, 2014, 52, 493-503.	2.5	12
22	Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends. Macromolecules, 2014, 47, 6791-6803.	2.2	147
23	PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties?. Polymer, 2013, 54, 3931-3939.	1.8	78
24	Stereocomplexation of Polylactide Enhanced by Poly(methyl methacrylate): Improved Processability and Thermomechanical Properties of Stereocomplexable Polylactide-Based Materials. ACS Applied Materials & Interfaces, 2013, 5, 11797-11807.	4.0	85