
Xiulan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7229258/publications.pdf Version: 2024-02-01

Χιμι ΑΝ Ημ

#	Article	IF	CITATIONS
1	High mass loading Ni4Co1-OH@CuO core-shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage. Nano Research, 2022, 15, 685-693.	5.8	15
2	Facilely synthesized honeycomb-like NiCo2O4 nanoflakes with an increased content of oxygen vacancies as an efficient cathode catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2022, 898, 162774.	2.8	10
3	Synthesis of Fe-doped NiO nanosheets on carbon cloth for improved catalytic performance in Li–O ₂ batteries. New Journal of Chemistry, 2022, 46, 1601-1607.	1.4	7
4	Systematic Study of Effective Hydrothermal Synthesis to Fabricate Nb-Incorporated TiO2 for Oxygen Reduction Reaction. Materials, 2022, 15, 1633.	1.3	1
5	Boosting activity of Ni(OH)2 toward alkaline energy storage by Co and Mn co-substitution. Journal of Alloys and Compounds, 2022, 908, 164704.	2.8	4
6	Three-dimensional self-supported CuCo ₂ O ₄ nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 3007-3017.	5.2	33
7	Fe2O3 nanorods decorated with ultrafine CeO2 as binder-free cathode to improve the performance of Li-O2 batteries. Electrochimica Acta, 2021, 368, 137645.	2.6	8
8	High mass loading NiCo–OH nanothorns coated CuO nanowire arrays for high-capacity nickel–zinc battery. Nanotechnology, 2021, 32, 505404.	1.3	4
9	Solution plasma method assisted with MOF for the synthesis of Pt@CoOx@N-C composite catalysts with enhanced methanol oxidation performance. International Journal of Hydrogen Energy, 2021, 46, 39743-39753.	3.8	9
10	Hybrid Sn–Co binary oxide nanosheets grown on carbon paper as the supercapacitor electrode materials. Journal of Alloys and Compounds, 2020, 814, 152199.	2.8	17
11	Fabrication of a three-dimensional interconnected mesoporous MnCo2O4 for rechargeable Li–O2 batteries. Journal of Alloys and Compounds, 2020, 817, 152736.	2.8	10
12	Blanket-like Co(OH)2/CoOOH/Co3O4/Cu(OH)2 composites on Cu foam for hybrid supercapacitor. Electrochimica Acta, 2020, 334, 135559.	2.6	49
13	Fabrication of carbon cloth supporting MnO x and its application in Li–O2 batteries. Nanotechnology, 2020, 31, 165709.	1.3	8
14	Solution plasma method direct synthesis of Au/CuO nanoparticles for glucose enzyme-free detection. Journal of Materials Science: Materials in Electronics, 2020, 31, 12983-12990.	1.1	5
15	Low-Temperature Liquid Phase Synthesis of Flower-like NiCo ₂ O ₄ for High-Efficiency Methanol Electro-oxidation. ACS Applied Energy Materials, 2020, 3, 9076-9082.	2.5	22
16	The simple-preparation of Cu–Ni/CuO–NiO using solution plasma for application in a glucose enzyme-free sensor. New Journal of Chemistry, 2020, 44, 10806-10812.	1.4	11
17	Tuning MnCo2O4 nanowire arrays on carbon cloth as an efficient cathode catalyst for Li–O2 batteries. Electrochimica Acta, 2020, 353, 136572.	2.6	22
18	Direct synthesis of ACo2O4 (AÂ=ÂNi, Cu, Fe, Zn) nanowires on carbon cloth as an oxygen electrode catalyst for rechargeable lithium-oxygen batteries. Applied Surface Science, 2020, 529, 147064.	3.1	19

XIULAN HU

#	Article	IF	CITATIONS
19	High surface area for La1-xSrxFeO3 (x=0, 0.4, 0.6) as bifunctional catalyst for rechargeable Li-O2 batteries. Nanotechnology, 2020, 31, 435407.	1.3	2
20	Solution plasma method for the preparation of Cu-Ni/CuO-NiO with excellent methanol electrocatalytic oxidation performance. Applied Surface Science, 2020, 513, 145808.	3.1	20
21	A Cu ₂ O/Cu/carbon cloth as a binder-free electrode for non-enzymatic glucose sensors with high performance. New Journal of Chemistry, 2020, 44, 1993-2000.	1.4	27
22	Remarkable enhancement in the electrochemical properties of cosmetic brush-like Co ₃ O ₄ nanowires via <i>in situ</i> surface modification with Ni ²⁺ . Nanotechnology, 2020, 31, 365405.	1.3	0
23	Electrochemical transformation method for the preparation of novel 3D hybrid porous CoOOH/Co(OH)2 composites with excellent pseudocapacitance performance. Journal of Power Sources, 2019, 443, 227278.	4.0	27
24	Copper/cobalt-doped LaMnO3 perovskite oxide as a bifunctional catalyst for rechargeable Li-O2 batteries. Journal of Alloys and Compounds, 2019, 801, 19-26.	2.8	48
25	Facile electrodeposition of MFe2O4 (M=Co, Fe) on carbon cloth as air cathodes for Li-O2 batteries. Ceramics International, 2019, 45, 13401-13408.	2.3	9
26	Facile synthesis of PtPd/SnO2 nanocatalysts with good photo-electrocatalytic property. Applied Surface Science, 2019, 471, 263-272.	3.1	15
27	Peanut shaped MnCo2O4 winded by multi-walled carbon nanotubes as an efficient cathode catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 433-440.	2.8	14
28	Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction. Scientific Reports, 2017, 7, 45555.	1.6	56
29	Fabrication of a composite of platinum, N-g-C3N4 and Ketjen Black for photo-electrochemical methanol oxidation. Journal of Materials Science, 2017, 52, 8444-8454.	1.7	8
30	Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability. Journal of Alloys and Compounds, 2017, 709, 588-595.	2.8	29
31	Synthesis and photocatalytic activity of Pt–ZnO hybrid nanocomposite by solution plasma technology. Nanotechnology, 2017, 28, 045604.	1.3	12
32	Plasma-induced synthesis of Pt nanoparticles supported on TiO 2 nanotubes for enhanced methanol electro-oxidation. Applied Surface Science, 2017, 399, 403-410.	3.1	47
33	Simple synthesized Pt/GNs/TiO ₂ with good mass activity and stability for methanol oxidation. Nanotechnology, 2017, 28, 505603.	1.3	15
34	Facile synthesis of Pt nanoparticles supported on anatase TiO ₂ nanotubes with good photo-electrocatalysis performance for methanol. RSC Advances, 2017, 7, 56194-56203.	1.7	13
35	Solution plasma synthesis of Pt/ZnO/KB for photo-assisted electro-oxidation of methanol. Journal of Alloys and Compounds, 2017, 692, 848-854.	2.8	30
36	In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conducted without additional reductants and agents. Scientific Reports, 2016, 6, 38652.	1.6	24

XIULAN HU

#	Article	IF	CITATIONS
37	Synthesis of SnO2nanoparticles using a solution plasma and their gas-sensing properties. Japanese Journal of Applied Physics, 2016, 55, 01AE17.	0.8	6
38	Controllable Low-Temperature Hydrothermal Synthesis and Gas-Sensing Investigation of Crystalline SnO2 Nanoparticles. Journal of Materials Engineering and Performance, 2016, 25, 1342-1346.	1.2	6
39	Controllable synthesis and characterization of $\hat{I}\pm$ -MnO2 nanowires. Journal of Crystal Growth, 2016, 434, 7-12.	0.7	14
40	Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets. Materials Science in Semiconductor Processing, 2016, 41, 12-16.	1.9	30
41	Novel synthesis of CuO nanofiber balls and films and their UV–visible light filteration property. Ceramics International, 2016, 42, 8505-8512.	2.3	12
42	Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities. Journal of Materials Science, 2016, 51, 4342-4348.	1.7	17
43	Controllable hydrothermal-assisted synthesis of mesoporous Co ₃ O ₄ nanosheets. RSC Advances, 2015, 5, 99899-99906.	1.7	18
44	One-step facile synthesis of carbon-supported PdAu nanoparticles and their electrochemical property and stability. Journal of Alloys and Compounds, 2015, 619, 452-457.	2.8	27
45	One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property. Progress in Natural Science: Materials International, 2014, 24, 593-598.	1.8	22
46	Plasma-Induced Synthesis of CuO Nanofibers and ZnO Nanoflowers in Water. Plasma Chemistry and Plasma Processing, 2014, 34, 1129-1139.	1.1	47
47	Polyethylenimine-assisted synthesis of transparent ZnO nanowhiskers at ambient temperatures. Thin Solid Films, 2014, 558, 134-139.	0.8	6
48	A facile template-free route to synthesize porous ZnO nanosheets with high surface area. Journal of Alloys and Compounds, 2013, 580, 373-376.	2.8	22
49	Facile fabrication of PtAu alloy clusters using solution plasma sputtering and their electrocatalytic activity. Journal of Alloys and Compounds, 2013, 552, 351-355.	2.8	60
50	Simple Synthesis of Platinum Nanoparticles by Plasma Sputtering in Water. Japanese Journal of Applied Physics, 2013, 52, 01AN05.	0.8	26
51	Characterization of Optical- and N ₂ Adsorption Properties of Self-Twin Zinc Oxide Nanoarrays Assemblies. Materials Focus, 2013, 2, 20-23.	0.4	0
52	Rapid Synthesis and Structural Characterization of Well-Defined Gold Clusters by <i>Solution Plasma Sputtering</i> . Crystal Growth and Design, 2012, 12, 119-123.	1.4	50
53	Low-Temperature Fabrication of Bunch-Shaped ZnO Nanowires Using a Sodium Hydroxide Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2011, 11, 10935-10939.	0.9	7
54	Fabrication of Zn(OH) ₂ /ZnO Nanosheetâ€ZnO Nanoarray Hybrid Structured Films by a Dissolution–Recrystallization Route. Journal of the American Ceramic Society, 2010, 93, 881-886.	1.9	20

Xiulan Hu

#	Article	IF	CITATIONS
55	Low-temperature fabrication of bunch-shaped ZnO nanowires using an sodium hydroxide aqueous solution. , 2010, , .		0
56	Dissolutionâ^'Recrystallization Induced Hierarchical Structure in ZnO: Bunched Roselike and Coreâ^'Shell-like Particles. Crystal Growth and Design, 2010, 10, 626-631.	1.4	42
57	Fabrication of Blanketâ€Like Assembled ZnO Nanowhiskers Using an Aqueous Solution. Journal of the American Ceramic Society, 2009, 92, 922-926.	1.9	16
58	Fabrication of ZnO nanowhiskers array film by forced-hydrolysis-initiated-nucleation technique using various templates. Thin Solid Films, 2009, 518, 621-624.	0.8	8
59	Low-temperature fabrication of porous and transparent ZnO films with hybrid structure by self-hydrolysis method. Thin Solid Films, 2009, 518, 638-641.	0.8	13
60	Control of crystal growth for ZnO nanowhisker films in aqueous solution. Thin Solid Films, 2009, 518, 906-910.	0.8	11
61	Selectively dissolution–recrystallization of ZnO crystals at the air–liquid interface. Journal of Crystal Growth, 2009, 311, 482-485.	0.7	7
62	Low-temperature fabrication of ZnO nanoarray films by forced hydrolysis of anhydrous zinc acetate layer. Journal of Crystal Growth, 2009, 311, 597-600.	0.7	14
63	Effects of polyethylenimine on morphology and property of ZnO films grown in aqueous solutions. Applied Surface Science, 2009, 255, 6823-6826.	3.1	13
64	Polyethylenimine-Guided Self-Twin Zinc Oxide Nanoarray Assemblies. Crystal Growth and Design, 2009, 9, 3598-3602.	1.4	18
65	Semi-circular shaped ZnO nanowhiskers assemblies deposited using an aqueous solution. Applied Surface Science, 2008, 255, 2329-2332.	3.1	10
66	In situ forced hydrolysis-assisted fabrication and photo-induced electrical property in sensor of ZnO nanoarrays. Journal of Colloid and Interface Science, 2008, 325, 459-463.	5.0	21
67	Micropatterning of ZnO Nanoarrays by Forced Hydrolysis of Anhydrous Zinc Acetate. Langmuir, 2008, 24, 7614-7617.	1.6	49
68	Synthesis of highly conductive and transparent ZnO nanowhisker films using aqueous solution. Journal of the Ceramic Society of Japan, 2008, 116, 384-388.	0.5	13
69	Influence of Growth Conditions on the Morphology of Zinc Oxide Nanoarrays. Transactions of the Materials Research Society of Japan, 2008, 33, 709-712.	0.2	1
70	Control of Crystal Growth of ZnO Nanowhiskers in Aqueous Solution and Synthesis of Transparent Nanoarrays. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 834-838.	0.1	2
71	Low-Temperature Fabrication of Semi-Circular Shaped ZnO Nanowhiskers Using an Aqueous Solution. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 849-853.	0.1	0
72	Removal of Tar Model Compounds Produced from Biomass Gasification Using Activated Carbons. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 707-711.	0.2	29

XIULAN HU

#	Article	IF	CITATIONS
73	Stability and Phase Relations of Dicalcium Silicate Hydrates under Hydrothermal Conditions. Journal of the Ceramic Society of Japan, 2006, 114, 174-179.	1.3	28
74	Hydration of β-dicalcium silicate at high temperatures under hydrothermal conditions. Cement and Concrete Research, 2006, 36, 810-816.	4.6	46
75	Rapid Low-Temperature Synthesis of Porous ZnO Nanoparticle Film by Self-Hydrolysis Technique. Key Engineering Materials, 0, 445, 123-126.	0.4	5