Jan Wijnholds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228496/publications.pdf

Version: 2024-02-01

100

all docs

98 9,213 44
papers citations h-index

100

docs citations

h-index g-index

100 8282
times ranked citing authors

88

#	Article	IF	CITATIONS
1	CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. American Journal of Ophthalmology, 2022, 234, 37-48.	1.7	17
2	Sleep Deprivation Does not Change the Flash Electroretinogram in Wild-type and <i>Opn4^{â^'/â^'}Gnat1^{â^'/â^'}dioe. Journal of Biological Rhythms, 2022, 37, 216-221.</i>	1.4	2
3	Defining inclusion criteria and endpoints for clinical trials: a prospective crossâ€sectional study in <i>CRB1</i> \$\delta\$essociated retinal dystrophies. Acta Ophthalmologica, 2021, 99, e402-e414.	0.6	10
4	Crumbs2 Is an Essential Slit Diaphragm Protein of the Renal Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2021, 32, 1053-1070.	3.0	17
5	AAV-CRB2 protects against vision loss in an inducible CRB1 retinitis pigmentosa mouse model. Molecular Therapy - Methods and Clinical Development, 2021, 20, 423-441.	1.8	14
6	Defining Phenotype, Tropism, and Retinal Gene Therapy Using Adeno-Associated Viral Vectors (AAVs) in New-Born Brown Norway Rats with a Spontaneous Mutation in Crb1. International Journal of Molecular Sciences, 2021, 22, 3563.	1.8	9
7	CLINICAL CHARACTERISTICS AND NATURAL HISTORY OF RHO-ASSOCIATED RETINITIS PIGMENTOSA. Retina, 2021, 41, 213-223.	1.0	18
8	Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Frontiers in Neuroscience, 2020, 14, 860.	1.4	16
9	Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838.	1.4	12
10	Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. International Journal of Molecular Sciences, 2020, 21, 4197.	1.8	54
11	Crumbs2 mediates ventricular layer remodelling to form theÂspinal cord central canal. PLoS Biology, 2020, 18, e3000470.	2.6	12
12	RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. International Journal of Molecular Sciences, 2020, 21, 835.	1.8	23
13	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
14	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
15	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
16	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
17	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		О
18	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0

#	Article	IF	CITATIONS
19	CRB2 Loss in Rod Photoreceptors Is Associated with Progressive Loss of Retinal Contrast Sensitivity. International Journal of Molecular Sciences, 2019, 20, 4069.	1.8	16
20	Human iPSC-Derived Retinas Recapitulate the Fetal CRB1 CRB2 Complex Formation and Demonstrate that Photoreceptors and $M\tilde{A}\frac{1}{4}$ ller Glia Are Targets of AAV5. Stem Cell Reports, 2019, 12, 906-919.	2.3	75
21	Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes, 2019, 10, 987.	1.0	24
22	"Basal Cell Migration―in Regeneration of the Corneal Wound-Bed. Stem Cell Reports, 2019, 12, 3-5.	2.3	11
23	Loss of CRB2 in MÃ 1 /4ller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Human Molecular Genetics, 2019, 28, 105-123.	1.4	29
24	CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES. Retina, 2019, 39, 1186-1199.	1.0	56
25	Microglial Cell Dysfunction in CRB1-Associated Retinopathies. Advances in Experimental Medicine and Biology, 2019, 1185, 159-163.	0.8	6
26	AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa. Methods in Molecular Biology, 2018, 1715, 135-151.	0.4	15
27	Production of iPS-Derived Human Retinal Organoids for Use in Transgene Expression Assays. Methods in Molecular Biology, 2018, 1715, 261-273.	0.4	17
28	AAV Serotype Testing on Cultured Human Donor Retinal Explants. Methods in Molecular Biology, 2018, 1715, 275-288.	0.4	9
29	The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the <i>RPGR</i> Gene., 2018, 59, 4123.		41
30	CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function. Human Molecular Genetics, 2018, 27, 3137-3153.	1.4	26
31	NTPDase2 as a Surface Marker to Isolate Flow Cytometrically a Mï $_2$ 1/2ller Glial Cell Enriched Population from Dissociated Neural Retinae. Journal of Neuroscience and Neurosurgery, 2018, 1, .	0.1	2
32	Transplantation of NTPDase2-positive Sorted Mi $^1/2$ ller Glial Cells into the Mouse Retina. Journal of Neuroscience and Neurosurgery, 2018, 1, .	0.1	1
33	Genotypic and Phenotypic Characteristics of CRB1 -Associated Retinal Dystrophies. Ophthalmology, 2017, 124, 884-895.	2.5	75
34	Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sciences, 2017, 7, 53.	1.1	0
35	The CRB1 Complex: Following the Trail of Crumbs to a Feasible Gene Therapy Strategy. Frontiers in Neuroscience, 2017, 11, 175.	1.4	43
36	Crumbs2 promotes cell ingression during the epithelial-to-mesenchymal transition at gastrulation. Nature Cell Biology, 2016, 18, 1281-1291.	4.6	73

#	Article	IF	CITATIONS
37	Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon. Neuroscience Research, 2016, 108, 12-23.	1.0	25
38	Protein O-Glucosyltransferase 1 (POGLUT1) Promotes Mouse Gastrulation through Modification of the Apical Polarity Protein CRUMBS2. PLoS Genetics, 2015, 11, e1005551.	1.5	34
39	Gene therapy into photoreceptors and MÃ 1 /4ller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models. Human Molecular Genetics, 2015, 24, 3104-3118.	1.4	65
40	A New CRB1 Rat Mutation Links MÃ $\frac{1}{4}$ ller Glial Cells to Retinal Telangiectasia. Journal of Neuroscience, 2015, 35, 6093-6106.	1.7	54
41	Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Human Molecular Genetics, 2014, 23, 3384-3401.	1.4	41
42	CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice. Human Molecular Genetics, 2014, 23, 3759-3771.	1.4	44
43	The CRB1 and adherens junction complex proteins in retinal development and maintenance. Progress in Retinal and Eye Research, 2014, 40, 35-52.	7.3	75
44	Specific tools for targeting and expression in MÃ $\frac{1}{4}$ ller glial cells. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14009.	1.8	46
45	The multi-PDZ domain protein-1 (MUPP-1) expression regulates cellular levels of the PALS-1/PATJ polarity complex. Experimental Cell Research, 2013, 319, 2514-2525.	1.2	30
46	MPP3 Is Required for Maintenance of the Apical Junctional Complex, Neuronal Migration, and Stratification in the Developing Cortex. Journal of Neuroscience, 2013, 33, 8518-8527.	1.7	10
47	Targeted Ablation of Crb1 and Crb2 in Retinal Progenitor Cells Mimics Leber Congenital Amaurosis. PLoS Genetics, 2013, 9, e1003976.	1.5	64
48	Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Human Molecular Genetics, 2013, 22, 35-50.	1.4	74
49	MPP3 regulates levels of PALS1 and adhesion between photoreceptors and MÃ $\frac{1}{4}$ ller cells. Glia, 2013, 61, 1629-1644.	2.5	12
50	Microarray and Morphological Analysis of Early Postnatal CRB2 Mutant Retinas on a Pure C57BL/6J Genetic Background. PLoS ONE, 2013, 8, e82532.	1.1	35
51	PALS1 Is Essential for Retinal Pigment Epithelium Structure and Neural Retina Stratification. Journal of Neuroscience, 2011, 31, 17230-17241.	1.7	48
52	Bone spicule pigment formation in retinitis pigmentosa: insights from a mouse model. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 1063-1070.	1.0	44
53	The Apical Complex Couples Cell Fate and Cell Survival to Cerebral Cortical Development. Neuron, 2010, 66, 69-84.	3.8	97
54	GFAP-Driven GFP Expression in Activated Mouse Müller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors. PLoS ONE, 2010, 5, e12387.	1.1	39

#	Article	IF	CITATIONS
55	Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography. PLoS ONE, 2009, 4, e7507.	1.1	183
56	TMEM16B, A Novel Protein with Calcium-Dependent Chloride Channel Activity, Associates with a Presynaptic Protein Complex in Photoreceptor Terminals. Journal of Neuroscience, 2009, 29, 6809-6818.	1.7	184
57	PSD95 \hat{l}^2 regulates plasma membrane Ca(2+) pump localization at the photoreceptor synapse. Molecular and Cellular Neurosciences, 2009, 41, 156-165.	1.0	20
58	Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Molecular Cancer Therapeutics, 2008, 7, 3092-3102.	1.9	68
59	A Single Amino Acid Substitution (Cys249Trp) in Crb1 Causes Retinal Degeneration and Deregulates Expression of Pituitary Tumor Transforming Gene Pttg1. Journal of Neuroscience, 2007, 27, 564-573.	1.7	77
60	Crb1 is a determinant of retinal apical Mýller glia cell features. Glia, 2007, 55, 1486-1497.	2.5	62
61	cGMP transport by vesicles from human and mouse erythrocytes. FEBS Journal, 2007, 274, 439-450.	2.2	61
62	Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. Journal of Hepatology, 2006, 44, 768-775.	1.8	158
63	The multidrug resistance protein $\hat{a} \in f1$ (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. Journal of Neurochemistry, 2006, 97, 373-384.	2.1	165
64	MPP3 is recruited to the MPP5 protein scaffold at the retinal outer limiting membrane. FEBS Journal, 2006, 273, 1152-1165.	2.2	31
65	Towards understanding CRUMBS function in retinal dystrophies. Human Molecular Genetics, 2006, 15, R235-R243.	1.4	112
66	Pals $1/M$ pp 5 is required for correct localization of Crb1 at the subapical region in polarized MÃ $\frac{1}{4}$ ller glia cells. Human Molecular Genetics, 2006, 15 , 2659-2672.	1.4	98
67	Opposite Effects of PSD-95 and MPP3 PDZ Proteins on Serotonin 5-Hydroxytryptamine2C Receptor Desensitization and Membrane Stability. Molecular Biology of the Cell, 2006, 17, 4619-4631.	0.9	70
68	Mpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse. Human Molecular Genetics, 2006, 15, 1291-1302.	1.4	46
69	MPP5 Recruits MPP4 to the CRB1 Complex in Photoreceptors. , 2005, 46, 2192.		62
70	PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. Journal of Cell Science, 2005, 118, 4049-4057.	1.2	127
71	The Human Multidrug Resistance Protein MRP5 Transports Folates and Can Mediate Cellular Resistance against Antifolates. Cancer Research, 2005, 65, 4425-4430.	0.4	114
72	In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Research, 2005, 45, 3512-3519.	0.7	172

#	Article	IF	CITATIONS
73	Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. Journal of Cell Science, 2004, 117, 4169-4177.	1.2	220
74	ABCC6/MRP6 mutations: further insight into the molecular pathology of pseudoxanthoma elasticum. European Journal of Human Genetics, 2003, 11, 215-224.	1.4	57
75	Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Survey of Ophthalmology, 2003, 48, 424-438.	1.7	149
76	The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9244-9249.	3.3	478
77	Characterization of the MRP4- and MRP5-mediated Transport of Cyclic Nucleotides from Intact Cells. Journal of Biological Chemistry, 2003, 278, 17664-17671.	1.6	233
78	Characterization of the Transport of Nucleoside Analog Drugs by the Human Multidrug Resistance Proteins MRP4 and MRP5. Molecular Pharmacology, 2003, 63, 1094-1103.	1.0	346
79	Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain. Mechanisms of Development, 2002, 110, 203-207.	1.7	98
80	MRP6 (ABCC6) Detection in Normal Human Tissues and Tumors. Laboratory Investigation, 2002, 82, 515-518.	1.7	458
81	Differential susceptibility of multidrug resistance protein-1 deficient mice to DSS and TNBS-induced colitis. Digestive Diseases and Sciences, 2002, 47, 2056-2063.	1.1	37
82	Mice Lacking the Multidrug Resistance Protein 1 Are Resistant to <i>Streptococcus pneumoniae-</i> Induced Pneumonia. Journal of Immunology, 2001, 166, 4059-4064.	0.4	64
83	A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins. Journal of the National Cancer Institute, 2000, 92, 1295-1302.	3.0	1,579
84	Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. Journal of Clinical Investigation, 2000, 105, 279-285.	3.9	334
85	The multidrug resistance protein family. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 347-357.	1.4	550
86	Multidrug Resistance Protein 1 Protects the Oropharyngeal Mucosal Layer and the Testicular Tubules against Drug-induced Damage. Journal of Experimental Medicine, 1998, 188, 797-808.	4.2	197
87	Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Letters, 1997, 419, 112-116.	1.3	130
88	Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 1997, 3, 1275-1279.	15.2	409
89	Segment-Specific Expression of the neuronatin Gene during Early Hindbrain Development. Developmental Biology, 1995, 171, 73-84.	0.9	83
90	Pax-3-DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains. Nucleic Acids Research, 1994, 22, 3131-3137.	6.5	44

#	Article	IF	CITATIONS
91	Characterization of Pax-6 and Hoxa-1 Binding to the Promoter Region of the Neural Cell Adhesion Molecule L1. DNA and Cell Biology, 1994, 13, 891-900.	0.9	74
92	Binding of a bZip protein to the estrogen-inducible apoVLDL II promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 115-120.	2.4	7
93	Pax: Gene regulators in the developing nervous system. Journal of Neurobiology, 1993, 24, 1367-1384.	3.7	190
94	Estrogen-inducible and liver-specific expression of the chicken Very Low Density Apolipoprotein II gene locus in transgenic mice. Nucleic Acids Research, 1993, 21, 1629-1635.	6.5	5
95	cC/EPB, a chicken transcription factor of the leucinezipper c/EBP family. Nucleic Acids Research, 1992, 20, 4093-4093.	6.5	21
96	Oestrogen facilitates the binding of ubiquitous and liver-enriched nuclear proteins to the apoVLDL II promoterin vivo. Nucleic Acids Research, 1991, 19, 33-41.	6.5	43
97	Regulatory elements and DNA-binding proteins mediating transcription from the chicken very-low-density apolipoprotein II gene. Nucleic Acids Research, 1991, 19, 5371-5377.	6.5	36
98	AAV-Mediated Gene Therapy for CRB1-Hereditary Retinopathies., 0,,.		1