
Xiao-Xiao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Science Advances, 2019, 5, eaav0363.	4.7	153
2	The cytotoxicity of 8-O-4′ neolignans from the seeds of Crataegus pinnatifida. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5599-5604.	1.0	67
3	Cytotoxic and antioxidant dihydrobenzofuran neolignans from the seeds of Crataegus pinnatifida. FA¬toterapA¬A¢, 2013, 91, 217-223.	1.1	55
4	Food Byproducts as a New and Cheap Source of Bioactive Compounds: Lignans with Antioxidant and Anti-inflammatory Properties from <i>Crataegus pinnatifida</i> Seeds. Journal of Agricultural and Food Chemistry, 2015, 63, 7252-7260.	2.4	48
5	Three Unusual Sesquiterpenes with Distinctive Ring Skeletons from <i>Daphne penicillata</i> Uncovered by Molecular Networking Strategies. Journal of Organic Chemistry, 2021, 86, 15298-15306.	1.7	44
6	Alkaloids with neuroprotective effects from the leaves of Isatis indigotica collected in the Anhui Province, China. Phytochemistry, 2018, 149, 132-139.	1.4	43
7	Cytotoxic triterpenoid glycosides (saikosaponins) from the roots of Bupleurum chinense. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3887-3892.	1.0	41
8	<i>ent</i> -Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk (<i>Zea mays</i>). Journal of Natural Products, 2018, 81, 1225-1234.	1.5	41
9	Neuroprotective Effects of 1,2-Diarylpropane Type Phenylpropanoid Enantiomers from Red Raspberry against H ₂ O ₂ -Induced Oxidative Stress in Human Neuroblastoma SH-SY5Y Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 331-338.	2.4	39
10	Guaiane-Type Sesquiterpenoids from the Roots of <i>Daphne genkwa</i> and Evaluation of Their Neuroprotective Effects. Journal of Natural Products, 2019, 82, 1510-1517.	1.5	39
11	Antioxidant and anti-inflammatory neolignans from the seeds of hawthorn. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5501-5506.	1.0	37
12	Quassinoids from <i>Picrasma quassioides</i> and Their Neuroprotective Effects. Journal of Natural Products, 2019, 82, 714-723.	1.5	37
13	Elephantopinolide A-P, germacrane-type sesquiterpene lactones from Elephantopus scaber induce apoptosis, autophagy and G2/M phase arrest in hepatocellular carcinoma cells. European Journal of Medicinal Chemistry, 2020, 198, 112362.	2.6	37
14	Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Industrial Crops and Products, 2018, 125, 50-58.	2.5	31
15	Anti-inflammatory sesquiterpene pyridine alkaloids from Tripterygium wilfordii. Fìtoterapìâ, 2015, 105, 49-54.	1.1	30
16	Neogenkwanines A–H: daphnane-type diterpenes containing 4,7 or 4,6-ether groups from the flower bud of Daphne genkwa. RSC Advances, 2015, 5, 4143-4152.	1.7	29
17	Enantiomeric β-carboline dimers from Picrasma quassioides and their anti-hepatoma potential. Phytochemistry, 2019, 159, 39-45.	1.4	29
18	New tirucallane triterpenoids from Picrasma quassioides with their potential antiproliferative activities on hepatoma cells. Bioorganic Chemistry, 2019, 84, 309-318.	2.0	28

#	Article	IF	CITATIONS
19	Structural Revisions of Two Highly Aromatic Naphthoquinone-Derived Dimers Based on NMR Analysis, Computer-Assisted Structure Elucidation Methods, and Computations. Organic Letters, 2021, 23, 7231-7235.	2.4	28
20	(±)-Pinnatifidaones A–D, four pairs of highly modified neolignan enantiomers with a rare spirocyclohexenone skeleton from <i>Crataegus pinnatifida</i> . Organic Chemistry Frontiers, 2021, 8, 953-960.	2.3	28
21	MS/MS-based molecular networking accelerated discovery of germacrane-type sesquiterpene lactones from Elephantopus scaber L. Phytochemistry, 2022, 198, 113136.	1.4	26
22	Bioactivity-guided isolation of β-Carboline alkaloids with potential anti-hepatoma effect from Picrasma quassioides (D. Don) Benn. Fìtoterapìâ, 2018, 130, 66-72.	1.1	25
23	Sesquiterpenoids from the roots of Daphne genkwa Siebold et Zucc. With potential anti-inflammatory activity. Phytochemistry, 2020, 174, 112348.	1.4	24
24	Cytotoxic clerodane diterpenoids from Croton crassifolius. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1237-1242.	1.0	23
25	Enantiomeric 8-O-4′ type neolignans from red raspberry as potential inhibitors of β-amyloid aggregation. Journal of Functional Foods, 2017, 37, 322-329.	1.6	23
26	Discovery of guaiane-type sesquiterpenoids from the roots of Daphne genkwa with neuroprotective effects. Bioorganic Chemistry, 2020, 95, 103545.	2.0	23
27	Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3968-3972.	1.0	22
28	Bioactive spiropyrrolizidine oxindole alkaloid enantiomers from <i>Isatis indigotica</i> Fortune. Organic and Biomolecular Chemistry, 2018, 16, 9430-9439.	1.5	22
29	Neuroprotective oleanane triterpenes from the roots of Bupleurum chinense. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1594-1598.	1.0	21
30	Phenylpropanoids from the fruit of Crataegus pinnatifida exhibit cytotoxicity on hepatic carcinoma cells through apoptosis induction. FìtoterapA¬A¢, 2018, 127, 301-307.	1.1	21
31	Enantiomeric neolignans from Picrasma quassioides exhibit distinctive cytotoxicity on hepatic carcinoma cells through ROS generation and apoptosis induction. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1263-1268.	1.0	21
32	Neolignans from Red Raspberry (<i>Rubus idaeus</i> L.) Exhibit Enantioselective Neuroprotective Effects against H ₂ 0 ₂ -Induced Oxidative Injury in SH-SY5Y Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 11390-11397.	2.4	21
33	Semi-synthesis and biological evaluation of flavone hybrids as multifunctional agents for the potential treatment of Alzheimer's disease. Bioorganic Chemistry, 2020, 100, 103917.	2.0	21
34	Guided isolation of daphnane-type diterpenes from Daphne genkwa by molecular network strategies. Phytochemistry, 2022, 198, 113144.	1.4	21
35	Antioxidant and Tyrosinase Inhibitory Effects of Neolignan Glycosides from Crataegus pinnatifida Seeds. Planta Medica, 2014, 80, 1732-1738.	0.7	20
36	Lignans from the seeds of Chinese hawthorn (<i>Crataegus pinnatifida</i> var <i>. major</i> N.E.Br.) against β-amyloid aggregation. Natural Product Research, 2018, 32, 1706-1713.	1.0	20

#	Article	IF	CITATIONS
37	Meroterpenoids and sesquiterpene dimers from Sarcandra glabra with anti-neuroinflammatory activity. Industrial Crops and Products, 2022, 183, 114983.	2.5	20
38	Two new compounds from <i>Crataegus pinnatifida</i> and their antithrombotic activities. Journal of Asian Natural Products Research, 2014, 16, 169-174.	0.7	19
39	Characterization of enantiomeric lignanamides from Solanum nigrum L. and their neuroprotective effects against MPP+-induced SH-SY5Y cells injury. Phytochemistry, 2019, 161, 163-171.	1.4	19
40	Effects of Enantiomerically Pure β-Carboline Alkaloids from Picrasma quassioides on Human Hepatoma Cells. Planta Medica, 2019, 85, 648-656.	0.7	19
41	Flavan derivative enantiomers and drimane sesquiterpene lactones from the Inonotus obliquus with neuroprotective effects. Bioorganic Chemistry, 2020, 96, 103588.	2.0	19
42	Seven new sesquineolignans isolated from the seeds of hawthorn and their neuroprotective activities. F¬toterap¬¢, 2018, 125, 6-12.	1.1	18
43	Chiral resolution and neuroprotective activities of enantiomeric 8-O-4′ neolignans from the fruits of Crataegus pinnatifida Bge. Fìtoterapìâ, 2019, 136, 104164.	1.1	18
44	Phenylpropanoid derivatives from the fruit of Crataegus pinnatifida Bunge and their distinctive effects on human hepatoma cells. Phytochemistry, 2019, 164, 252-261.	1.4	18
45	Germacranolides from Elephantopus scaber L. and their cytotoxic activities. Phytochemistry, 2020, 178, 112479.	1.4	18
46	Quassinoids from the Root Barks of <i>Ailanthus altissima</i> : Isolation, Configurational Assignment, and Cytotoxic Activities. Chinese Journal of Chemistry, 2021, 39, 879-886.	2.6	18
47	Guaiane-type sesquiterpenoids from the roots of Stellera chamaejasme L. and their neuroprotective activities. Phytochemistry, 2021, 183, 112628.	1.4	18
48	Phenylpropanoids from Juglans mandshurica exhibit cytotoxicities on liver cancer cell lines through apoptosis induction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 597-601.	1.0	17
49	Autophagy antagonizes apoptosis induced by flavan enantiomers from Daphne giraldii in hepatic carcinoma cells inÂvitro. European Journal of Medicinal Chemistry, 2017, 133, 1-10.	2.6	17
50	Targeted isolation of cytotoxic germacranolide sesquiterpenes from Elephantopus scaber L. using small molecule accurate recognition technology. Bioorganic Chemistry, 2020, 104, 104314.	2.0	17
51	Kaurane and abietane diterpenoids from the roots of Tripterygium wilfordii and their cytotoxic evaluation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2942-2946.	1.0	16
52	Chiral Separation of Cytotoxic Flavan Derivatives from <i>Daphne giraldii</i> . Journal of Natural Products, 2016, 79, 2236-2242.	1.5	16
53	Discovery of dihydrobenzofuran neolignans from Rubus ideaus L. with enantioselective anti-Aβ1–42 aggregation activity. Bioorganic Chemistry, 2018, 80, 64-69.	2.0	16
54	Phenylpropanoid and dibenzofuran derivatives from Crataegus pinnatifida with antiproliferative activities on hepatoma cells. Bioorganic Chemistry, 2019, 93, 103354.	2.0	16

#	Article	IF	CITATIONS
55	Discovery of cycloneolignan enantiomers from Isatis indigotica Fortune with neuroprotective effects against MPP+-induced SH-SY5Y cell injury. Bioorganic Chemistry, 2019, 88, 102926.	2.0	16
56	New norlignan enantiomers from the fruit of Crataegus pinnatifida with neuroprotective activities. Chinese Chemical Letters, 2020, 31, 1254-1258.	4.8	16
57	Isolation of macrocarpene-type sesquiterpenes from stigma maydis with neuroprotective activities. Fìtoterapìâ, 2020, 141, 104448.	1.1	16
58	Lignans and neolignans with isovaleroyloxy moiety from Solanum lyratum Thunb.: Chiral resolution, configurational assignment and neuroprotective effects. Phytochemistry, 2020, 178, 112461.	1.4	16
59	Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorganic Chemistry, 2020, 105, 104438.	2.0	16
60	Terpenylated coumarins from the root bark of Ailanthus altissima (Mill.) Swingle. Phytochemistry, 2020, 175, 112361.	1.4	16
61	Tomensides A–D, new antiproliferative phenylpropanoid sucrose esters from Prunus tomentosa leaves. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2459-2462.	1.0	15
62	Steroids from the rhizome of Anemarrhena asphodeloides and their cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3081-3085.	1.0	15
63	1,3-Diphenylpropanes from Daphne giraldii induced apoptosis in hepatocellular carcinoma cells through nuclear factor kappa-B inhibition. Bioorganic Chemistry, 2018, 77, 619-624.	2.0	15
64	Isolation of enantiomeric furolactones and furofurans from Rubus idaeus L. with neuroprotective activities. Phytochemistry, 2019, 164, 122-129.	1.4	15
65	Sesquiterpenes from Echinacea purpurea and their anti-inflammatory activities. Phytochemistry, 2020, 179, 112503.	1.4	15
66	Site Occupation and Spectral Assignment in Eu ²⁺ -Activated β-Ca ₃ (PO ₄) ₂ -Type Phosphors: Insights from First-Principles Calculations. Inorganic Chemistry, 2020, 59, 16760-16768.	1.9	15
67	Discovery of βâ€Dihydroagarofuranâ€Type Sesquiterpenoids from the Leaves of <i>Tripterygium wilfordii</i> with Neuroprotective Activities. Chinese Journal of Chemistry, 2021, 39, 337-344.	2.6	15
68	Stereoisomeric guaiacylglycerol-β-coniferyl aldehyde ether induces distinctive apoptosis by downregulation of MEK/ERK pathway in hepatocellular carcinoma cells. Bioorganic Chemistry, 2018, 81, 382-388.	2.0	14
69	Quassinoids: Phytochemistry and antitumor prospect. Phytochemistry, 2021, 187, 112769.	1.4	14
70	Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4823-4827.	1.0	13
71	Enantiomeric lignans with anti-Î ² -amyloid aggregation activity from the twigs and leaves of Pithecellobium clypearia Benth. Bioorganic Chemistry, 2018, 77, 579-585.	2.0	13
72	Racemic phenylpropanoids from the root barks of Ailanthus altissima (Mill.) Swingle with cytotoxicity against hepatoma cells. Fìtoterapì¢, 2018, 130, 234-240.	1.1	13

#	Article	IF	CITATIONS
73	Pyran-2-one derivatives from Croton crassifolius as potent apoptosis inducers in HepG2 cells via p53-mediated Ras/Raf/ERK pathway. Bioorganic Chemistry, 2018, 79, 355-362.	2.0	13
74	Seven new neuroprotective sesquineolignans isolated from the seeds of Crataegus pinnatifida. Fìtoterapìâ, 2019, 133, 225-230.	1.1	13
75	Chiral resolution and neuroprotective activities of enantiomeric dihydrobenzofuran neolignans from the fruit of Crataegus pinnatifida. Bioorganic Chemistry, 2019, 85, 469-474.	2.0	13
76	N-acylanthranilic acid derivatives with anti-Aβ1–42 aggregation activity from the leaves of Isatis indigotica fortune. Fìtoterapìâ, 2018, 128, 169-174.	1.1	12
77	Dihydro-β-agarofuran sesquiterpenoid derivatives with anti-inflammatory activity from the leaves of Tripterygium wilfordii. Bioorganic Chemistry, 2019, 92, 103288.	2.0	12
78	Phenylpropanoids and lignans from Prunus tomentosa seeds as efficient β-amyloid (Aβ) aggregation inhibitors. Bioorganic Chemistry, 2019, 84, 269-275.	2.0	12
79	A new coumarin from <i>Juglans mandshurica</i> Maxim induce apoptosis in hepatocarcinoma cells. Natural Product Research, 2019, 33, 1791-1793.	1.0	12
80	Phenolics from Archidendron clypearia (Jack) I.C.Nielsen protect SH-SY5Y cells against H2O2-induced oxidative stress. Phytochemistry, 2020, 176, 112414.	1.4	12
81	Racemic neolignans from Crataegus pinnatifida: Chiral resolution, configurational assignment, and cytotoxic activities against human hepatoma cells. FìtoterapĂ¬Ă¢, 2019, 137, 104287.	1.1	11
82	Terpenoids from stigma maydis (Zea mays L.) alleviate hydrogen peroxide-induced SH-SY5Y cell injury by activating Nrf2. Bioorganic Chemistry, 2020, 102, 104131.	2.0	11
83	Four pairs of alkaloid enantiomers from Isatis indigotica Fortune Ex Land with neuroprotective effects against H2O2-induced SH-SY5Y cell injury. Bioorganic Chemistry, 2020, 96, 103650.	2.0	11
84	Isolation of chemical compositions as dietary antioxidant supplements and neuroprotectants from Chaga mushroom (Inonotus obliquus). Food Bioscience, 2022, 47, 101623.	2.0	11
85	Iridoid glycoside and lignans from a wild vegetable (<i>Patrinia villosa</i> Juss.) with antioxidant activity. Journal of Food Biochemistry, 2018, 42, e12521.	1.2	10
86	Flavan enantiomers from Daphne giraldii selectively induce apoptotic cell death in p53-null hepatocarcinoma cells in vitro. Chemico-Biological Interactions, 2018, 289, 1-8.	1.7	10
87	Cytotoxic lignans from the barks of Juglans mandshurica. Journal of Asian Natural Products Research, 2018, 20, 494-499.	0.7	10
88	Enantiomeric 8,4′-type oxyneolignans from the root barks of Ailanthus altissima (Mill.) Swingle and their neuroprotective effects against H2O2-induced SH-SY5Y cells injury. Fìtoterapìâ, 2019, 139, 104403.	1.1	10
89	Assignment of the stereostructures of sesquiterpenoids from the roots of Daphne genkwa via quantum chemical calculations. Fìtoterapìâ, 2019, 138, 104352.	1.1	10
90	Two new sesquineolignans from the seeds of <i>Crataegus pinnatifida</i> and their <i>β</i> -amyloid aggregation inhibitory activitiy. Natural Product Research, 2019, 33, 2446-2452.	1.0	10

#	Article	IF	CITATIONS
91	Triterpenoids from Picrasma quassioides with their cytotoxic activities. Phytochemistry Letters, 2020, 39, 128-131.	0.6	10
92	Sesquineolignans derivatives with neuroprotective activity from the fruits of Crataegus pinnatifida. FìtoterapA¬Ã¢, 2020, 143, 104591.	1.1	10
93	Chiral resolution and bioactivity of enantiomeric benzofuran neolignans from the fruit of Rubus ideaus L Fìtoterapìâ, 2018, 127, 56-61.	1.1	9
94	Enantiomeric 8-O-4′-type neolignans from Crataegus pinnatifida exhibit cytotoxic effect via apoptosis and autophagy in Hep3B cells. Bioorganic Chemistry, 2020, 104, 104267.	2.0	9
95	Rapid Approaches for Assignment of the Relative Configuration in 1-Oxygenated 1,2-Diarylpropan-3-ols by ¹ H NMR Spectroscopy. Journal of Natural Products, 2021, 84, 20-25.	1.5	9
96	3, 3′-Neolignans from Pithecellobium clypearia Benth and their anti-inflammatory activity. Fìtoterapìâ, 2016, 112, 16-21.	1.1	8
97	Investigation of chemical constituents of safflower and their tyrosinase inhibitory activity. Journal of Asian Natural Products Research, 2019, 21, 248-256.	0.7	8
98	Dihydroagarofuran sesquiterpenoid derivatives from the leaves of <i>Tripterygium wilfordii</i> with potential neuroprotective effects against H ₂ O ₂ -induced SH-SY5Y cell injuries. New Journal of Chemistry, 2020, 44, 10258-10265.	1.4	8
99	A new dineolignan with anti- <i>β</i> -amyloid aggregation activity from the fruits of <i>crataegus pinnatifida</i> bge. Natural Product Research, 2021, 35, 2112-2115.	1.0	8
100	Structure elucidation and absolute configuration determination of C26, C27 and C30 tirucallane triterpenoids from the leaves of Picrasma quassioides (D. Don) Benn. Phytochemistry, 2021, 184, 112675.	1.4	8
101	Semisynthesis and Non-Small-Cell Lung Cancer Cytotoxicity Evaluation of Germacrane-Type Sesquiterpene Lactones from <i>Elephantopus scaber</i> . Journal of Natural Products, 2022, 85, 352-364.	1.5	8
102	Sesquiterpenoids from the herbs of Solanum lyratum and their cytotoxicity on human hepatoma cells. Fìtoterapìâ, 2019, 139, 104411.	1.1	7
103	Alkaloid Enantiomers from Isatis tinctoria with Neuroprotective Effects against H2O2-Induced SH-SY5Y Cell Injury. Planta Medica, 2019, 85, 1374-1382.	0.7	7
104	Network pharmacology-based screening of the active ingredients and potential targets of the genus of Pithecellobium marthae (Britton & Killip) Niezgoda & Nevl for application to Alzheimer's disease. Natural Product Research, 2019, 33, 2368-2371.	1.0	7
105	Chiral resolution and bioactivity of enantiomeric furofuran lignans from Juglans mandshurica Maxim. Natural Product Research, 2020, 34, 2225-2228.	1.0	7
106	Discovery of dihydro-Î ² -agarofurans from Tripterygium wilfordii with their H2O2-induced SH-SY5Y cell protective effects. Bioorganic Chemistry, 2020, 104, 104247.	2.0	7
107	The identification of alkaloids from the stems of <i>Picrasma quassioides</i> via computer-assisted structure elucidation and quantum chemical calculations. Journal of Asian Natural Products Research, 2021, 23, 217-227.	0.7	7
108	Flavonoid-triazolyl hybrids as potential anti-hepatitis C virus agents: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2021, 218, 113395.	2.6	7

#	Article	IF	CITATIONS
109	Monoterpenoid coumarins and monoterpenoid phenylpropanoids from the root bark of <i>Ailanthus altissima</i> . New Journal of Chemistry, 2021, 45, 1100-1108.	1.4	7
110	UV-guided isolation of enantiomeric polyacetylenes from Bupleurum scorzonerifolium Willd. with inhibitory effects against LPS-induced NO release in BV-2 microglial cells. Bioorganic Chemistry, 2022, 119, 105521.	2.0	7
111	Gold Nanoparticles as a Probe for Prion Determination <i>via</i> Resonance Light Scattering Method. Analytical Sciences, 2012, 28, 475-479.	0.8	6
112	Prenylated flavans from Daphne giraldii and their cytotoxic activities. Fìtoterapìâ, 2019, 132, 68-74.	1.1	6
113	Dihydro-β-agarofuran sesquiterpenoid derivatives with neuroprotective activity from the leaves of Tripterygium wilfordii. Fìtoterapìâ, 2020, 142, 104501.	1.1	6
114	The identification of phenylpropanoids isolated from the root bark of <i>Ailanthus altissima</i> (Mill.) Swingle. Natural Product Research, 2021, 35, 1139-1146.	1.0	6
115	Chamaejasmenin E from Stellera chamaejasme induces apoptosis of hepatocellular carcinoma cells by targeting c-Met in vitro and in vivo. Bioorganic Chemistry, 2022, 119, 105509.	2.0	6
116	Stellerasespenes A‒E: Sesquiterpenoids from Stellera chamaejasme and their anti-neuroinflammatory effects. Phytochemistry, 2022, 201, 113275.	1.4	6
117	Sesquiterpenoids from the roots of <i>Croton crassifolius</i> . Journal of Asian Natural Products Research, 2019, 21, 666-672.	0.7	5
118	A new monoterpene-lactone with neuroprotective activity from corn silk. Natural Product Research, 2021, 35, 3142-3145.	1.0	5
119	Chemical constituents from Picrasma quassioides (D.Don) Benn. and their network analysis of chemotaxonomic significance. Biochemical Systematics and Ecology, 2020, 93, 104160.	0.6	5
120	Isolation and structure elucidation of anti-tyrosinase compounds from the seeds of <i>Crotalaria pallida</i> . Journal of Asian Natural Products Research, 2021, 23, 738-744.	0.7	5
121	Highly modified steroids from <i>Inonotus obliquus</i> . Organic and Biomolecular Chemistry, 2020, 18, 3908-3916.	1.5	5
122	Oxylipin vanillyl acetals from Solanum lyratum. Fìtoterapìâ, 2020, 143, 104559.	1.1	5
123	Benzoic acid derivatives from the root barks of <i>Ailanthus altissima</i> . Journal of Asian Natural Products Research, 2021, 23, 103-109.	0.7	5
124	Identification of natural compounds extracted from crude drugs as novel inhibitors of hepatitis C virus. Biochemical and Biophysical Research Communications, 2021, 567, 1-8.	1.0	5
125	The nature compound dehydrocrenatidine exerts potent antihepatocellular carcinoma by destroying mitochondrial complexes in vitro and in vivo. Phytotherapy Research, 2022, 36, 1353-1371.	2.8	5
126	The hypothesis of tautomeric equilibrium between epimers in ciquitins A and B. Journal of Asian Natural Products Research, 2022, 24, 1052-1057.	0.7	5

#	Article	IF	CITATIONS
127	Vibsanoids A–D, four new subtypes of vibsane diterpenoids with a distinctive tricyclo[8.2.1.0 ^{2,9}]tridecane core from <i>Viburnum odoratissimum</i> . Organic Chemistry Frontiers, 2022, 9, 4561-4568.	2.3	5
128	Two new lactones from whole herbs of Patrinia villosa Juss. Phytochemistry Letters, 2017, 22, 145-148.	0.6	4
129	Diverse metabolites from corn silk with anti-Aβ1–42 aggregation activity. Fìtoterapìâ, 2019, 138, 104356	. 1.1	4
130	Three new sesquineolignans from the fruits of <i>Crataegus pinnatifida</i> . Journal of Asian Natural Products Research, 2021, 23, 1051-1056.	0.7	4
131	Chiral-phase resolution of sesquilignans from raspberries (Rubus idaeus L.) and their neuroprotective effects. Fìtoterapìâ, 2020, 146, 104655.	1.1	4
132	Intrinsic Point Defects and Dopants Ce3+ in SrLiAl3N4: Thermodynamic and Spectral Properties from First Principles. Journal of Physical Chemistry C, 2020, 124, 13400-13408.	1.5	4
133	Small Molecule Accurate Recognition Technology accelerated isolation of structurally diverse sesquiterpenes from Litsea lancilimba Merr Fìtoterapìâ, 2022, 158, 105168.	1.1	4
134	Lignans with neuroprotective activity from the fruits of Crataegus pinnatifida. Fìtoterapìâ, 2022, 160, 105216.	1.1	4
135	Acylated sucroses and butenolide analog from the leaves of Tripterygium wilfordii Hook. f. and their potential anti-tyrosinase effects. Fìtoterapìâ, 2022, 161, 105250.	1.1	4
136	Anti-β-amyloid aggregation activity of enantiomeric furolactone-type lignans from Archidendron clypearia (Jack) I.C.N Natural Product Research, 2020, 34, 456-463.	1.0	3
137	Structure reassignment of two triterpenes with CASE algorithms and DFT chemical shift predictions. Natural Product Research, 2020, , 1-8.	1.0	3
138	Nine new dihydro-β-agarofuran sesquiterpene polyesters from the leaves of <i>Tripterygium wilfordii</i> . New Journal of Chemistry, 2022, 46, 2423-2430.	1.4	3
139	Flavonoids with antioxidant and tyrosinase inhibitory activity from corn silk (<i>Stigma maydis</i>). Natural Product Research, 2023, 37, 835-839.	1.0	3
140	The effect of quantum dot labeling on virus activity. Analytical Methods, 2015, 7, 3801-3805.	1.3	2
141	Triterpenes from <i>Archidendron clypearia</i> (Jack) I.C.N. with anti- <i>β</i> -amyloid aggregation activity. Natural Product Research, 2021, 35, 2789-2792.	1.0	2
142	Structure elucidation of a new terpenylated coumarin with the combination of CASE algorithms and DFT/NMR approach. Journal of Asian Natural Products Research, 2021, 23, 982-991.	0.7	2
143	A new dilignan from the twigs and leaves of <i>Archidendron clypearia</i> . Journal of Asian Natural Products Research, 2021, 23, 609-614.	0.7	2
144	Chemical constituents from <i>Solanum nigrum</i> and their neuroprotective activities. Journal of Asian Natural Products Research, 2022, 24, 703-712.	0.7	2

#	Article	IF	CITATIONS
145	Discovery of alkaloids from the leaves of Isatis indigotica Fortune with neuroprotective activity. Chinese Journal of Natural Medicines, 2021, 19, 680-685.	0.7	2
146	Phytochemical investigation on the leaves of Picrasma quassioides (D.Don) Benn. and the chemophenetics significance. Biochemical Systematics and Ecology, 2022, 102, 104421.	0.6	2
147	Aromatic compounds from the sclerotia of <i>Inonotus obliquus</i> . Natural Product Research, 2021, 35, 2454-2457.	1.0	1
148	Chemical constituents from the fruits of Solanum nigrum and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2022, 103, 104452.	0.6	1
149	Four pair of enantiomeric benzofuran lignans from the fruits of Crataegus pinnatifida bunge. Natural Product Research, 2021, , 1-7.	1.0	0