
Aimin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228323/publications.pdf Version: 2024-02-01

Διμαίνι Γιιι

#	Article	IF	CITATIONS
1	Differential expression of the Tmem132 family genes in the developing mouse nervous system. Gene Expression Patterns, 2022, 45, 119257.	0.3	4
2	Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS ONE, 2021, 16, e0245454.	1.1	7
3	Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development. Developmental Cell, 2020, 52, 647-658.e6.	3.1	39
4	lmmunohistochemistry and RNA In Situ Hybridization in Mouse Brain Development. Methods in Molecular Biology, 2020, 2047, 475-489.	0.4	1
5	Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nature Communications, 2019, 10, 2612.	5.8	125
6	Distinct Activities of Gli1 and Gli2 in the Absence of Ift88 and the Primary Cilia. Journal of Developmental Biology, 2019, 7, 5.	0.9	4
7	Proteostasis in the Hedgehog signaling pathway. Seminars in Cell and Developmental Biology, 2019, 93, 153-163.	2.3	28
8	The CPLANE protein Intu protects kidneys from ischemia-reperfusion injury by targeting STAT1 for degradation. Nature Communications, 2018, 9, 1234.	5.8	18
9	The small GTPase RSG1 controls a final step in primary cilia initiation. Journal of Cell Biology, 2018, 217, 413-427.	2.3	26
10	Spop regulates Gli3 activity and Shh signaling in dorsoventral patterning of the mouse spinal cord. Developmental Biology, 2017, 432, 72-85.	0.9	23
11	INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene, 2017, 36, 4997-5005.	2.6	28
12	Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14751-14756.	3.3	52
13	A hypomorphic allele reveals an important role of <i>inturned</i> in mouse skeletal development. Developmental Dynamics, 2015, 244, 736-747.	0.8	14
14	The loss of Hh responsiveness by a non-ciliary Gli2 variant. Development (Cambridge), 2015, 142, 1651-60.	1.2	16
15	C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2164-2169.	3.3	146
16	Fluorescent and Electron Microscopy Revealed Critical Roles of C2cd3 in Centriolar Distal Appendage Assembly and Cilia Biogenesis. Microscopy and Microanalysis, 2014, 20, 1378-1379.	0.2	0
17	Identifying Essential Genes in Mouse Development via an ENU-Based Forward Genetic Approach. Methods in Molecular Biology, 2014, 1092, 95-118.	0.4	4
18	lmmunohistochemistry and RNA In Situ Hybridization in Mouse Brain Development. Methods in Molecular Biology, 2014, 1082, 269-283.	0.4	5

Αιμιν Liu

#	Article	IF	CITATIONS
19	Centrosomal Protein DZIP1 Regulates Hedgehog Signaling by Promoting Cytoplasmic Retention of Transcription Factor GLI3 and Affecting Ciliogenesis. Journal of Biological Chemistry, 2013, 288, 29518-29529.	1.6	47
20	Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia. Cell Death and Differentiation, 2013, 20, 130-138.	5.0	19
21	Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning. Developmental Biology, 2012, 362, 141-153.	0.9	31
22	The Cilium-Dependent Hedgehog Signaling in Mammals. Cell & Developmental Biology, 2012, 01, .	0.3	0
23	Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Developmental Biology, 2011, 353, 38-49.	0.9	129
24	The antagonistic functions of the activator and repressor forms of Gli proteins underlie the dorsoventral patterning of the wild type and mutant spinal cords. Developmental Biology, 2011, 356, 160.	0.9	0
25	Hedgehog signaling: mechanisms and evolution. Frontiers in Biology, 2011, 6, 504-521.	0.7	2
26	PCP effector proteins inturned and fuzzy play nonredundant roles in the patterning but not convergent extension of mammalian neural tube. Developmental Dynamics, 2011, 240, 1938-1948.	0.8	29
27	Coordinated Translocation of Mammalian Gli Proteins and Suppressor of Fused to the Primary Cilium. PLoS ONE, 2010, 5, e15900.	1.1	66
28	PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Developmental Biology, 2010, 339, 418-428.	0.9	93
29	Analysis of Hedgehog Signaling in Mouse Intraflagellar Transport Mutants. Methods in Cell Biology, 2009, 93, 347-369.	0.5	9
30	Planar cell polarity effector gene <i>Fuzzy</i> regulates cilia formation and Hedgehog signal transduction in mouse. Developmental Dynamics, 2009, 238, 3035-3042.	0.8	83
31	Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Developmental Biology, 2009, 330, 452-460.	0.9	121
32	C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development (Cambridge), 2008, 135, 4049-4058.	1.2	84
33	Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Reviews Neuroscience, 2005, 6, 945-954.	4.9	285
34	Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development (Cambridge), 2005, 132, 3103-3111.	1.2	472
35	Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003, 426, 83-87.	13.7	1,260
36	Early Anterior/Posterior Patterning of the Midbrain and Cerebellum. Annual Review of Neuroscience, 2001, 24, 869-896.	5.0	219

#	Article	IF	CITATIONS
37	Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mechanisms of Development, 1998, 75, 107-115.	1.7	104