
A Johannes Dolman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ABCflux database: Arctic–boreal CO ₂ flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data, 2022, 14, 179-208.	3.7	22
2	Land Management Contributes significantly to observed Vegetation Browning in Syria during 2001–2018. Biogeosciences, 2022, 19, 1515-1525.	1.3	6
3	How Well Do We Understand the Landâ€Oceanâ€Atmosphere Carbon Cycle?. Reviews of Geophysics, 2022, 60, .	9.0	38
4	Land Management Explains the Contrasting Greening Pattern Across Chinaâ€Russia Border Based on Paired Land Use Experiment Approach. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
5	Disentangling effects of natural and anthropogenic drivers on forest net ecosystem production. Science of the Total Environment, 2022, 839, 156326.	3.9	9
6	Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 2021, 8, nwaa145.	4.6	70
7	Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	19
8	Porewater <i>l´</i> ¹³ C _{DO indicates variable extent of degradation in different talik layers of coastal Alaskan thermokarst lakes. Biogeosciences, 2021, 18, 2241-2258.}	C </td <td>sub></td>	sub>
9	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	2.3	40
10	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.	4.2	83
11	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
12	Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations. Biogeosciences, 2021, 18, 4445-4472.	1.3	14
13	Geomorphology and InSAR-Tracked Surface Displacements in an Ice-Rich Yedoma Landscape. Frontiers in Earth Science, 2021, 9, .	0.8	10
14	Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute?. Environmental Science and Policy, 2021, 122, 116-126.	2.4	23
15	Emerging forest–peatland bistability and resilience of European peatland carbon stores. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
16	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	1.9	33
17	Using precipitation sensitivity to temperature to adjust projected global runoff. Environmental Research Letters, 2021, 16, 124032.	2.2	3
18	Homogenization and polarization of the seasonal water discharge of global rivers in response to climatic and anthropogenic effects. Science of the Total Environment, 2020, 709, 136062.	3.9	14

#	Article	IF	CITATIONS
19	Wood allocation tradeâ€offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell and Environment, 2020, 43, 965-980.	2.8	56
20	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
21	On the Use of the Term "Evapotranspiration― Water Resources Research, 2020, 56, e2020WR028055.	1.7	51
22	The Greening and Wetting of the Sahel Have Leveled off since about 1999 in Relation to SST. Remote Sensing, 2020, 12, 2723.	1.8	8
23	Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.	1.9	34
24	Drought resistance increases from the individual to the ecosystem level in highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and ecosystem responses to drought. Biogeosciences, 2020, 17, 2621-2645.	1.3	12
25	East Siberian Arctic inland waters emit mostly contemporary carbon. Nature Communications, 2020, 11, 1627.	5.8	43
26	Drying and Wetting Trends and Vegetation Covariations in the Drylands of China. Water (Switzerland), 2020, 12, 933.	1.2	8
27	Quantifying burning efficiency in megacities using the NO ₂ â^•CO ratio from the Tropospheric Monitoring Instrument (TROPOMI). Atmospheric Chemistry and Physics, 2020, 20, 10295-10310.	1.9	23
28	Nitrogen Deposition Maintains a Positive Effect on Terrestrial Carbon Sequestration in the 21st Century Despite Growing Phosphorus Limitation at Regional Scales. Global Biogeochemical Cycles, 2019, 33, 810-824.	1.9	26
29	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.	3.7	69
30	Carbon Cycles in Forests. Ecological Studies, 2019, , 69-100.	0.4	2
31	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	9.0	354
32	Soil Moistureâ€Temperature Coupling in a Set of Land Surface Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1481-1498.	1.2	51
33	Models meet data: Challenges and opportunities in implementing land management in Earth system models. Global Change Biology, 2018, 24, 1470-1487.	4.2	86
34	Filtration artefacts in bacterial community composition can affect the outcome of dissolved organic matter biolability assays. Biogeosciences, 2018, 15, 7141-7154.	1.3	9
35	The enigma of the Amazonian carbon balance. Environmental Research Letters, 2018, 13, 061002.	2.2	5
36	Global soil moisture bimodality in satellite observations and climate models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4299-4311.	1.2	14

#	Article	IF	CITATIONS
37	Land management: data availability and process understanding for global change studies. Global Change Biology, 2017, 23, 512-533.	4.2	142
38	The WACMOS-ET project – PartÂ2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 2016, 20, 823-842.	1.9	253
39	Contribution of water-limited ecoregions to their own supply of rainfall. Environmental Research Letters, 2016, 11, 124007.	2.2	47
40	A post-Paris look at climate observations. Nature Geoscience, 2016, 9, 646-646.	5.4	9
41	Worldwide spatiotemporal atmospheric ammonia (NH ₃) columns variability revealed by satellite. Geophysical Research Letters, 2015, 42, 8660-8668.	1.5	66
42	Low historical nitrogen deposition effect on carbon sequestration in the boreal zone. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2542-2561.	1.3	29
43	Corrigendum to "Global cropland monthly gross primary production in the year 2000" published in Biogeosciences, 11, 3871–3880, 2014. Biogeosciences, 2015, 12, 2365-2366.	1.3	Ο
44	The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.	3.3	171
45	Seasonality of net carbon exchanges of Mediterranean ecosystems across an altitudinal gradient. Journal of Arid Environments, 2015, 115, 1-9.	1.2	8
46	An objective prior error quantification for regional atmospheric inverse applications. Biogeosciences, 2015, 12, 7403-7421.	1.3	17
47	Global cropland monthly gross primary production in the year 2000. Biogeosciences, 2014, 11, 3871-3880.	1.3	24
48	Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences, 2014, 11, 4651-4664.	1.3	28
49	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	1.3	189
50	Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	21
51	Improving a plot-scale methane emission model and its performance at a northeastern Siberian tundra site. Biogeosciences, 2014, 11, 3985-3999.	1.3	17
52	Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving anthropogenic warming rates from the instrumental temperature record. Earth System Dynamics, 2014, 5, 375-382.	2.7	15
53	Land management and land-cover change haveÂimpacts of similar magnitude on surfaceÂtemperature. Nature Climate Change, 2014, 4, 389-393.	8.1	404
54	El Niño–La Niña cycle and recent trends in continental evaporation. Nature Climate Change, 2014, 4, 122-126.	8.1	254

#	Article	IF	CITATIONS
55	Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia. Remote Sensing of Environment, 2014, 140, 330-338.	4.6	251
56	Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. International Journal of Remote Sensing, 2014, 35, 7007-7029.	1.3	67
57	Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 2014, 20, 3439-3456.	4.2	52
58	Fifty years since Monteith's 1965 seminal paper: the emergence of global ecohydrology. Ecohydrology, 2014, 7, 897-902.	1.1	39
59	Evaluating 4 years of atmospheric ammonia (NH ₃) over Europe using IASI satellite observations and LOTOSâ€EUROS model results. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9549-9566.	1.2	61
60	Global distributions, time series and error characterization of atmospheric ammonia (NH ₃) from IASI satellite observations. Atmospheric Chemistry and Physics, 2014, 14, 2905-2922.	1.9	195
61	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	13.7	482
62	The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 2013, 27, 187-199.	1.9	127
63	Exploring the Impact of Land Cover and Topography on Rainfall Maxima in the Netherlands. Journal of Hydrometeorology, 2013, 14, 524-542.	0.7	16
64	A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 2013, 17, 3885-3894.	1.9	109
65	Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard–Oeschger climate event: insights from two models of different complexity. Climate of the Past, 2013, 9, 149-171.	1.3	16
66	Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 2013, 17, 3707-3720.	1.9	310
67	Changing Climate and Overgrazing Are Decimating Mongolian Steppes. PLoS ONE, 2013, 8, e57599.	1.1	136
68	What eddyâ€covariance measurements tell us about prior land flux errors in CO ₂ â€flux inversion schemes. Global Biogeochemical Cycles, 2012, 26, .	1.9	47
69	Inverse carbon dioxide flux estimates for the Netherlands. Journal of Geophysical Research, 2012, 117, .	3.3	24
70	Correction to "Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia― Journal of Geophysical Research, 2012, 117, .	3.3	1
71	Soil carbon in the Arctic and the permafrost carbon feedback. Current Opinion in Environmental Sustainability, 2012, 4, 545-551.	3.1	50
72	A global analysis of soil moisture derived from satellite observations and a land surface model. Hydrology and Earth System Sciences, 2012, 16, 833-847.	1.9	69

#	Article	IF	CITATIONS
73	An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences, 2012, 9, 5323-5340.	1.3	113
74	A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environmental Modelling and Software, 2012, 30, 139-142.	1.9	186
75	Initializing a regional climate model with satellite-derived soil moisture. Journal of Geophysical Research, 2011, 116, .	3.3	48
76	Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	46
77	Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. Journal of Geophysical Research, 2011, 116, .	3.3	78
78	Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data. Journal of Geophysical Research, 2011, 116, .	3.3	35
79	Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology, 2011, 151, 22-38.	1.9	135
80	Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151, 765-773.	1.9	446
81	Corrigendum to "Modelling basin-wide variations in Amazon forest productivity – Part 1: Model calibration, evaluation and upscaling functions for canopy photosynthesis" published in Biogeosciences, 6, 1247–1272, 2009. Biogeosciences, 2011, 8, 653-656.	1.3	1
82	The role of endophytic methane-oxidizing bacteria in submerged <l>Sphagnum</l> in determining methane emissions of Northeastern Siberian tundra. Biogeosciences, 2011, 8, 1267-1278.	1.3	46
83	Magnitude and variability of land evaporation and its components at the global scale. Hydrology and Earth System Sciences, 2011, 15, 967-981.	1.9	335
84	A summer climate regime over Europe modulated by the North Atlantic Oscillation. Hydrology and Earth System Sciences, 2011, 15, 57-64.	1.9	36
85	Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 2011, 15, 453-469.	1.9	1,069
86	A comparison of different inverse carbon flux estimation approaches for application on a regional domain. Atmospheric Chemistry and Physics, 2011, 11, 10349-10365.	1.9	21
87	Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Climate Change, 2011, 1, 119-123.	8.1	149
88	Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. Journal of Geophysical Research, 2011, 116, .	3.3	66
89	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	1.8	71
90	Evaporation in the Global Hydrological Cycle. , 2011, , 79-87.		4

Evaporation in the Global Hydrological Cycle. , 2011, , 79-87. 90

#	Article	IF	CITATIONS
91	A Carbon Cycle Science Update Since IPCC AR-4. Ambio, 2010, 39, 402-412.	2.8	29
92	Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Current Opinion in Environmental Sustainability, 2010, 2, 301-311.	3.1	62
93	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	4.2	223
94	The European carbon balance. Part 4: integration of carbon and other traceâ€gas fluxes. Global Change Biology, 2010, 16, 1451-1469.	4.2	157
95	Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467, 951-954.	13.7	1,771
96	Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3, 315-322.	5.4	1,254
97	Evaporation in focus. Nature Geoscience, 2010, 3, 296-296.	5.4	41
98	Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology, 2010, 150, 757-774.	1.9	105
99	The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia. Agricultural and Forest Meteorology, 2010, 150, 226-237.	1.9	42
100	Global canopy interception from satellite observations. Journal of Geophysical Research, 2010, 115, .	3.3	242
101	Modeling regional to global CH ₄ emissions of boreal and arctic wetlands. Global Biogeochemical Cycles, 2010, 24, .	1.9	102
102	Modelling basin-wide variations in Amazon forest productivity – Part 1: Model calibration, evaluation and upscaling functions for canopy photosynthesis. Biogeosciences, 2009, 6, 1247-1272.	1.3	34
103	Comment on "Biotic pump of atmospheric moisture as driver of the hydrological cycle on land" by A. M. Makarieva and V. G. Gorshkov, Hydrol. Earth Syst. Sci., 11, 1013–1033, 2007. Hydrology and Earth System Sciences, 2009, 13, 1299-1305.	1.9	21
104	Recycling of moisture in Europe: contribution of evaporation to variability in very wet and dry years. Hydrology and Earth System Sciences, 2009, 13, 1685-1697.	1.9	36
105	Mesoscale modelling of the CO ₂ interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment. Biogeosciences, 2009, 6, 633-646.	1.3	27
106	The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 2009, 16, 2399-2399.	4.2	5
107	Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. Nature Geoscience, 2009, 2, 842-850.	5.4	310
108	CO2 fluxes and evaporation on a peatland in the Netherlands appear not affected by water table fluctuations. Agricultural and Forest Meteorology, 2009, 149, 1201-1208.	1.9	45

#	Article	IF	CITATIONS
109	Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agricultural and Forest Meteorology, 2009, 149, 1129-1139.	1.9	65
110	Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest. Agricultural and Forest Meteorology, 2009, 149, 1565-1572.	1.9	27
111	Correction to "High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)― Journal of Geophysical Research, 2009, 114, .	3.3	8
112	Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research, 2009, 114, .	3.3	261
113	Detecting regional variability in sources and sinks of carbon dioxide: a synthesis. Biogeosciences, 2009, 6, 1015-1026.	1.3	25
114	On observational and modelling strategies targeted at regional carbon exchange over continents. Biogeosciences, 2009, 6, 1949-1959.	1.3	55
115	Modelling regional scale surface fluxes, meteorology and CO ₂ mixing ratios for the Cabauw tower in the Netherlands. Biogeosciences, 2009, 6, 2265-2280.	1.3	38
116	Mass conservation above slopes in the Regional Atmospheric Modelling System (RAMS). Environmental Fluid Mechanics, 2008, 8, 239-248.	0.7	9
117	Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers. Surveys in Geophysics, 2008, 29, 399-420.	2.1	311
118	Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: A multi-layer model versus a single-layer model. Journal of Hydrology, 2008, 349, 156-167.	2.3	23
119	Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 2008, 22, .	1.9	238
120	Optimum vegetation characteristics, assimilation, and transpiration during a dry season: 1. Model description. Water Resources Research, 2008, 44, .	1.7	14
121	Optimum vegetation characteristics, assimilation, and transpiration during a dry season: 2. Model evaluation. Water Resources Research, 2008, 44, .	1.7	6
122	Parameterisation of aerodynamic roughness over boreal, cool- and warm-temperate forests. Agricultural and Forest Meteorology, 2008, 148, 1916-1925.	1.9	71
123	Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agricultural and Forest Meteorology, 2008, 148, 1941-1953.	1.9	148
124	Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia. Agricultural and Forest Meteorology, 2008, 148, 2006-2012.	1.9	20
125	Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 2008, 148, 1978-1989.	1.9	69
126	Responses of surface conductance to forest environments in the Far East. Agricultural and Forest Meteorology, 2008, 148, 1926-1940.	1.9	49

#	Article	IF	CITATIONS
127	Water and energy exchange in East Siberian forest: An introduction. Agricultural and Forest Meteorology, 2008, 148, 1913-1915.	1.9	6
128	Water and energy exchange in East Siberian forest: A synthesis. Agricultural and Forest Meteorology, 2008, 148, 2013-2018.	1.9	19
129	Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20350-20355.	3.3	336
130	Precipitation Recycling: Moisture Sources over Europe using ERA-40 Data. Journal of Hydrometeorology, 2008, 9, 1073-1083.	0.7	63
131	A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy. Atmospheric Chemistry and Physics, 2008, 8, 431-443.	1.9	100
132	Modelling representation errors of atmospheric CO ₂ mixing ratios at a regional scale. Atmospheric Chemistry and Physics, 2008, 8, 6587-6596.	1.9	41
133	Introduction: Observing the Continental-Scale Greenhouse Gas Balance. Ecological Studies, 2008, , 1-4.	0.4	2
134	Flux Tower Sites, State of the Art, and Network Design. Ecological Studies, 2008, , 215-242.	0.4	4
135	Regional Measurements and Modelling of Carbon Exchange. Ecological Studies, 2008, , 285-307.	0.4	2
136	Implications of CO ₂ pooling on δ ¹³ C of ecosystem respiration and leaves in Amazonian forest. Biogeosciences, 2008, 5, 779-795.	1.3	7
137	A Roadmap for a Continental-Scale Greenhouse Gas Observing System in Europe. Ecological Studies, 2008, , 377-386.	0.4	0
138	Mesoscale covariance of transport and CO ₂ fluxes: Evidence from observations and simulations using the WRFâ€VPRM coupled atmosphereâ€biosphere model. Journal of Geophysical Research, 2007, 112, .	3.3	93
139	Regional carbon fluxes and the effect of topography on the variability of atmospheric CO2. Journal of Geophysical Research, 2007, 112, .	3.3	44
140	Atmospheric CO2modeling at the regional scale: Application to the CarboEurope Regional Experiment. Journal of Geophysical Research, 2007, 112, .	3.3	65
141	The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences, 2007, 4, 411-424.	1.3	167
142	The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences, 2007, 4, 985-1003.	1.3	103
143	Atmospheric CO ₂ modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models. Biogeosciences, 2007, 4, 1115-1126.	1.3	55
144	Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest. Biogeosciences, 2007, 4, 137-154.	1.3	14

#	Article	IF	CITATIONS
145	Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biology, 2007, 13, 2110-2127.	4.2	69
146	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	4.2	863
147	Climate is affected more by maritime than by continental land use change: A multiple scale analysis. Global and Planetary Change, 2006, 54, 128-149.	1.6	68
148	Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India). Hydrology and Earth System Sciences, 2006, 10, 703-713.	1.9	38
149	EClog: A handheld eddy covariance logging system. Computers and Electronics in Agriculture, 2006, 51, 110-114.	3.7	15
150	The CarboEurope Regional Experiment Strategy. Bulletin of the American Meteorological Society, 2006, 87, 1367-1380.	1.7	101
151	The carbon budget of terrestrial ecosystems at country-scale – a European case study. Biogeosciences, 2005, 2, 15-26.	1.3	178
152	Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	48
153	High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	96
154	Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (<l>Larix cajanderii</l>) on permafrost. Biogeosciences, 2004, 1, 133-146.	1.3	78
155	Estimates of CO2 uptake and release among European forests based on eddy covariance data. Global Change Biology, 2004, 10, 1445-1459.	4.2	67
156	The convective boundary layer over pasture and forest in Amazonia. Theoretical and Applied Climatology, 2004, 78, 47.	1.3	137
157	Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agricultural and Forest Meteorology, 2004, 127, 1-16.	1.9	91
158	The effects of forests on mesoscale atmospheric processes , 2004, , 51-72.		5
159	Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. Journal of Geophysical Research, 2003, 108, .	3.3	51
160	Sonic anemometer (co)sine response and flux measurement. Agricultural and Forest Meteorology, 2003, 119, 195-207.	1.9	92
161	Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science, 2003, 300, 1538-1542.	6.0	551
162	Analyzing Carbon Flux Measurements. Science, 2003, 301, 916b-917.	6.0	14

#	Article	IF	CITATIONS
163	Factors Controlling Forest Atmosphere Exchange of Water, Energy, and Carbon. Ecological Studies, 2003, , 207-223.	0.4	9
164	The Carbon Sink Strength of Forests in Europe: a Synthesis of Results. Ecological Studies, 2003, , 225-232.	0.4	4
165	Conclusions: The Role of Canopy Flux Measurements in Global C-Cycle Research. Ecological Studies, 2003, , 255-266.	0.4	5
166	Coniferous Forests (Scots and Maritime Pine): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants. Ecological Studies, 2003, , 71-97.	0.4	8
167	Land Cover and the Climate System. , 2003, , 73-110.		3
168	Land Use and Terrestrial Carbon Sinks. , 2003, , 111-136.		1
169	Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. Journal of Geophysical Research, 2002, 107, LBA 39-1.	3.3	222
170	Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 2002, 38, 30-1-30-11.	1.7	169
171	The carbon uptake of a mid latitude pine forest growing on sandy soil. Agricultural and Forest Meteorology, 2002, 111, 157-170.	1.9	144
172	Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113, 97-120.	1.9	1,133
173	Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113, 223-243.	1.9	1,877
174	Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2 O fluxes at six forest sites in Europe. Global Change Biology, 2002, 8, 213-230.	4.2	135
175	Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107, 43-69.	1.9	1,579
176	Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71-77.	1.9	493
177	Carbon Balance Gradient in European Forests: Should We Doubt 'Surprising' Results? A Reply to Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145.	1.1	1
178	Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7, 269-278.	4.2	843
179	Carbon balance gradient in European forests: should we doubt â€~surprising' results? A reply to Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145-150.	1.1	24
180	Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.	13.7	1,438

#	Article	IF	CITATIONS
181	The Pilot Phase of the Global Soil Wetness Project. Bulletin of the American Meteorological Society, 1999, 80, 851-878.	1.7	292
182	Photosynthesis and carbon balance of a Sahelian fallow savanna. Global Change Biology, 1998, 4, 523-538.	4.2	74
183	Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology, 1998, 4, 461-475.	4.2	524
184	Biospheric Aspects of the Hydrological Cycle. Journal of Hydrology, 1998, 212-213, 1-21.	2.3	92
185	Photosynthesis and carbon balance of a Sahelian fallow savanna. Global Change Biology, 1998, 4, 523-538.	4.2	16
186	Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology, 1998, 4, 461-475.	4.2	122
187	Evaporation and surface conductance of three temperate forests in the Netherlands. Annales Des Sciences Forestières, 1998, 55, 255-270.	1.1	30
188	Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models. Journal of Hydrology, 1997, 190, 252-268.	2.3	37
189	Defining area-average parameters in meteorological models for land surfaces with mesoscale heterogeneity. Journal of Hydrology, 1997, 190, 302-316.	2.3	34
190	Variability in boundary layer structure during HAPEX-Sahel wet-dry season transition. Journal of Hydrology, 1997, 188-189, 965-997.	2.3	17
191	Observations of boundary layer development during the HAPEX-Sahel intensive observation period. Journal of Hydrology, 1997, 188-189, 998-1016.	2.3	56
192	The role of the land surface in Sahelian climate: HAPEX-Sahel results and future research needs. Journal of Hydrology, 1997, 188-189, 1067-1079.	2.3	39
193	A comparison of surface fluxes at the HAPEX-Sahel fallow bush sites. Journal of Hydrology, 1997, 188-189, 400-425.	2.3	55
194	Evaporation, sensible heat and canopy conductance of fallow savannah and patterned woodland in the Sahel. Journal of Hydrology, 1997, 188-189, 494-515.	2.3	50
195	An overview of HAPEX-Sahel: a study in climate and desertification. Journal of Hydrology, 1997, 188-189, 4-17.	2.3	131
196	Modelling evaporation from a drained and rewetted peatland. Journal of Hydrology, 1997, 199, 252-271.	2.3	24
197	CO2 flux and photosynthesis of a Sahelian savanna during HAPEX-Sahel. Physics and Chemistry of the Earth, 1996, 21, 135-141.	0.3	8
198	Remote Sensing Parameterization of Meso-scale Land Surface Evaporation. , 1996, , 401-429.		6

Remote Sensing Parameterization of Meso-scale Land Surface Evaporation. , 1996, , 401-429. 198

#	Article	IF	CITATIONS
199	The Roughness Length for Heat of Sparse Vegetation. Journal of Applied Meteorology and Climatology, 1995, 34, 583-585.	1.7	45
200	Regionalization and parameterization of exchange processes at the land surface-atmosphere interface. Studies in Environmental Science, 1995, , 421-424.	0.0	0
201	Geographical, biological and remote sensing aspects of the hydrologic atmospheric pilot experiment in the sahel (HAPEX-Sahel). Remote Sensing of Environment, 1995, 51, 215-234.	4.6	118
202	Model parametrization and data needs. Environment & Policy, 1995, , 261-313.	0.4	0
203	The Effect of Forest on Mesoscale Rainfall: An Example from HAPEX-MOBILHY. Journal of Applied Meteorology and Climatology, 1994, 33, 445-454.	1.7	54
204	HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Annales Geophysicae, 1994, 12, 53-64.	0.6	318
205	Reply to comments by E. A. B. Eltahir and R. L. Bras on 'The parametrization of rainfall interception in GCM's by A. J. Dolman and D. Gregory (April 1992, 118, 455–467). Quarterly Journal of the Royal Meteorological Society, 1994, 120, 735-736.	1.0	1
206	Effective resistance to sensible- and latent-heat flux in heterogeneous terrain. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 423-442.	1.0	84
207	A multiple-source land surface energy balance model for use in general circulation models. Agricultural and Forest Meteorology, 1993, 65, 21-45.	1.9	155
208	A note on areally-averaged evaporation and the value of the effective surface conductance. Journal of Hydrology, 1992, 138, 583-589.	2.3	35
209	The Parametrization of Rainfall Interception In GCMs. Quarterly Journal of the Royal Meteorological Society, 1992, 118, 455-467.	1.0	117
210	The Parametrization of Rainfall Interception In GCMs. , 1992, 118, 455.		25
211	Stomatal and surface conductance of tropical rainforest. Agricultural and Forest Meteorology, 1991, 54, 303-318.	1.9	124
212	Measurements of evaporation from fallow Sahelian savannah at the start of the dry season. Quarterly Journal of the Royal Meteorological Society, 1991, 117, 749-760.	1.0	51
213	Lagrangian andK-theory approaches in modelling evaporation from sparse canopies. Quarterly Journal of the Royal Meteorological Society, 1991, 117, 1325-1340.	1.0	27
214	Estimates of sensible heat flux from observations of temperature fluctuations. Boundary-Layer Meteorology, 1991, 57, 311-322.	1.2	56
215	Lagrangian and K-theory approaches in modelling evaporation from sparse canopies. Quarterly Journal of the Royal Meteorological Society, 1991, 117, 1325-1340.	1.0	49
216	Water dynamics of forests: one-dimensional modelling. Progress in Physical Geography, 1989, 13, 471-506.	1.4	8

#	Article	IF	CITATION
217	Transpiration of an oak forest as predicted from porometer and weather data. Journal of Hydrology, 1988, 97, 225-234.	2.3	19
218	Predicting forest transpiration from climatological data. Agricultural and Forest Meteorology, 1988, 42, 339-353.	1.9	43
219	Stomatal behaviour in an oak canopy. Agricultural and Forest Meteorology, 1988, 43, 99-108.	1.9	24
220	Modelling forest water consumption in the Netherlands. Agricultural Water Management, 1988, 14, 413-422.	2.4	4
221	Summer and winter rainfall interception in an oak forest. Predictions with an analytical and a numerical simulation model. Journal of Hydrology, 1987, 90, 1-9.	2.3	87
222	Estimates of roughness length and zero plane displacement for a foliated and non-foliated oak canopy. Agricultural and Forest Meteorology, 1986, 36, 241-248.	1.9	60
223	Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genetical Research, 1985, 45, 299-314.	0.3	81