
Olivier Couvert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 2002, 72, 107-113.	4.7	679
2	Ability of <i>Bacillus cereus</i> Group Strains To Cause Food Poisoning Varies According to Phylogenetic Affiliation (Groups I to VII) Rather than Species Affiliation. Journal of Clinical Microbiology, 2010, 48, 3388-3391.	3.9	200
3	Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters. International Journal of Food Microbiology, 2005, 101, 73-81.	4.7	110
4	Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods. International Journal of Food Microbiology, 2010, 144, 236-242.	4.7	67
5	Design of challenge testing experiments to assess the variability of Listeria monocytogenes growth in foods. Food Microbiology, 2011, 28, 746-754.	4.2	58
6	Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiology, 2013, 33, 69-76.	4.2	58
7	Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw. Food Microbiology, 2012, 32, 79-86.	4.2	51
8	Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH. Food Microbiology, 2012, 30, 29-36.	4.2	49
9	Modelling pH evolution and lactic acid production in the growth medium of a lactic acid bacterium: Application to set a biological TTI. International Journal of Food Microbiology, 2008, 128, 101-107.	4.7	45
10	Predictive Microbiology Coupled with Gas (O ₂ /CO ₂) Transfer in Food/Packaging Systems: How to Develop an Efficient Decision Support Tool for Food Packaging Dimensioning. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 1-21.	11.7	43
11	Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L.Âmonocytogenes and P.Âfluorescens. Food Microbiology, 2017, 68, 89-96.	4.2	37
12	Validation of an overall model describing the effect of three environmental factors on the apparent -value of spores. International Journal of Food Microbiology, 2005, 100, 223-229.	4.7	36
13	Quantification of spore resistance for assessment and optimization of heating processes: A never-ending story. Food Microbiology, 2010, 27, 568-572.	4.2	34
14	Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Research in Microbiology, 2017, 168, 369-378.	2.1	34
15	Modelling the overall effect of pH on the apparent heat resistance of Bacillus cereus spores. International Journal of Food Microbiology, 1999, 49, 57-62.	4.7	32
16	Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation. International Journal of Food Microbiology, 2007, 114, 100-104.	4.7	32
17	Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries. Food Microbiology, 2015, 48, 153-162.	4.2	31
18	Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere. Food Microbiology, 2016, 58, 43-55.	4.2	31

OLIVIER COUVERT

#	Article	IF	CITATIONS
19	Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. International Journal of Food Microbiology, 2007, 116, 88-95.	4.7	30
20	Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. International Journal of Food Microbiology, 2021, 337, 108915.	4.7	30
21	Modeling the Recovery of Heat-Treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 Spores at Suboptimal Temperature and pH Using Growth Limits. Applied and Environmental Microbiology, 2015, 81, 562-568.	3.1	26
22	Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiology, 2019, 77, 21-25.	4.2	26
23	Mechanistic model coupling gas exchange dynamics and Listeria monocytogenes growth in modified atmosphere packaging of non respiring food. Food Microbiology, 2015, 51, 192-205.	4.2	25
24	Effect of pH on the heat resistance of spores. International Journal of Food Microbiology, 2001, 63, 51-56.	4.7	24
25	Relationship between the apparent heat resistance of Bacillus cereus spores and the pH and NaCl concentration of the recovery medium. International Journal of Food Microbiology, 2000, 55, 223-227.	4.7	21
26	Extending the gamma concept to non-thermal inactivation: A dynamic model to predict the fate of Salmonella during the dried sausages process. Food Microbiology, 2015, 45, 266-275.	4.2	16
27	Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery. Food Microbiology, 2016, 55, 64-72.	4.2	16
28	Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods. Frontiers in Microbiology, 2017, 8, 2109.	3.5	15
29	Identification and characterization of aerobic spore forming bacteria isolated from commercial camel's milk in south of Algeria. Small Ruminant Research, 2016, 137, 59-64.	1.2	12
30	Identification, heat resistance and growth potential of mesophilic spore-forming bacteria isolated from Algerian retail packaged couscous. Food Control, 2014, 45, 16-21.	5.5	11
31	Modelling the influence of the incubation temperature upon the estimated heat resistance of heated bacillus spores. Letters in Applied Microbiology, 2006, 43, 17-21.	2.2	9
32	Semantic annotation of Web data applied to risk in food. International Journal of Food Microbiology, 2008, 128, 174-180.	4.7	9
33	Flexible querying of Web data to simulate bacterial growth in food. Food Microbiology, 2011, 28, 685-693.	4.2	8
34	Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Food Microbiology, 2022, 106, 104055.	4.2	7
35	Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions. Food Microbiology, 2016, 56, 87-95.	4.2	6
36	Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions. Food Microbiology, 2017, 64, 126-134.	4.2	6

OLIVIER COUVERT

#	Article	IF	CITATIONS
37	Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis. Applied and Environmental Microbiology, 2019, 85, .	3.1	6
38	Sym'Previus. La microbiologie prévisionnelle, du laboratoire à l'industrie agroalimentaire. Sciences Des Aliments, 2006, 26, 377-393.	0.2	6
39	Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light. International Journal of Food Microbiology, 2018, 278, 81-87.	4.7	5
40	The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage. Food Microbiology, 2021, 100, 103832.	4.2	4
41	Predicting heat process efficiency in thermal processes when bacterial inactivation is not log-linear. International Journal of Food Microbiology, 2019, 290, 36-41.	4.7	3
42	Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth. Food Microbiology, 2021, 95, 103690.	4.2	3
43	Dispersed phase volume fraction, weak acids and Tween 80 in a model emulsion: Effect on the germination and growth of Bacillus weihenstephanensis KBAB4 spores. Food Research International, 2018, 109, 288-297	6.2	2