Yue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7228065/publications.pdf

Version: 2024-02-01

94415 56717 7,074 92 37 83 h-index citations g-index papers 93 93 93 8408 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	21.0	1,095
2	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
3	Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Letters, 2016, 16, 448-453.	9.1	494
4	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	21.0	329
5	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	14.6	274
6	Aminoâ€Mediated Anchoring Perovskite Quantum Dots for Stable and Lowâ€Threshold Random Lasing. Advanced Materials, 2017, 29, 1701185.	21.0	269
7	Advances and Prospects for Whispering Gallery Mode Microcavities. Advanced Optical Materials, 2015, 3, 1136-1162.	7.3	258
8	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	7.3	244
9	Solutionâ€Processed Low Threshold Vertical Cavity Surface Emitting Lasers from Allâ€Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2017, 27, 1605088.	14.9	242
10	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015, 7, 8159-8165.	5. 6	174
11	Stimulated Emission and Lasing from CdSe/CdS/ZnS Coreâ€Multiâ€Shell Quantum Dots by Simultaneous Threeâ€Photon Absorption. Advanced Materials, 2014, 26, 2954-2961.	21.0	172
12	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	12.2	164
13	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	7.3	138
14	Solutionâ€Grown CsPbBr ₃ /Cs ₄ PbBr ₆ Perovskite Nanocomposites: Toward Temperatureâ€Insensitive Optical Gain. Small, 2017, 13, 1701587.	10.0	134
15	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	21.0	130
16	Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi ontinuous Pumping. Advanced Materials, 2015, 27, 169-175.	21.0	127
17	Perovskite quantum dot lasers. InformaÄnÃ-Materiály, 2020, 2, 170-183.	17.3	97
18	Nanoimprinted Organic Semiconductor Laser Pumped by a Lightâ€Emitting Diode. Advanced Materials, 2013, 25, 2826-2830.	21.0	92

#	Article	IF	CITATIONS
19	Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser. Advanced Materials, 2015, 27, 2741-2746.	21.0	92
20	Polarizationâ€Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. Advanced Materials, 2021, 33, e2003615.	21.0	89
21	Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Letters, 2017, 17, 2640-2646.	9.1	83
22	Allâ€Inorganic Metal Halide Perovskite Nanostructures: From Photophysics to Lightâ€Emitting Applications. Small Methods, 2018, 2, 1700252.	8.6	83
23	Ï€-Conjugated Discrete Oligomers Containing Planar and Nonplanar Aromatic Motifs. Journal of the American Chemical Society, 2017, 139, 3089-3094.	13.7	63
24	Harnessing Hot Phonon Bottleneck in Metal Halide Perovskite Nanocrystals via Interfacial Electron–Phonon Coupling. Nano Letters, 2020, 20, 4610-4617.	9.1	60
25	Micro‣ED pumped polymer laser: A discussion of future pump sources for organic lasers. Laser and Photonics Reviews, 2013, 7, 1065-1078.	8.7	59
26	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, 1 , .	5. 3	59
27	A Novel Chiral Metasurface with Controllable Circular Dichroism Induced by Coupling Localized and Propagating Modes. Advanced Optical Materials, 2016, 4, 883-888.	7.3	53
28	Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation. Nanoscale, 2017, 9, 12637-12646.	5 . 6	49
29	Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots. Applied Physics Letters, 2013, 102, .	3.3	48
30	Multicolor lasing prints. Applied Physics Letters, 2015, 107, .	3. 3	47
31	Multicolor Amplified Spontaneous Emissions Based on Organic Polymorphs That Undergo Excitedâ€State Intramolecular Proton Transfer. Chemistry - A European Journal, 2016, 22, 4899-4903.	3.3	47
32	Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high a \in Q microlasers. Laser and Photonics Reviews, 2015, 9, 507-516.	8.7	44
33	Broadband Saturable Absorption of Graphene Oxide Thin Film and Its Application in Pulsed Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 441-447.	2.9	42
34	Second harmonic generation from the `centrosymmetric' crystals. IUCrJ, 2015, 2, 317-321.	2.2	42
35	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Progress in Quantum Electronics, 2018, 60, 1-29.	7.0	41
36	Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. NPG Asia Materials, 2019, 11, .	7.9	41

#	Article	IF	Citations
37	Induced Optical Chirality and Circularly Polarized Emission from Achiral CdSe/ZnS Quantum Dots via Resonantly Coupling with Plasmonic Chiral Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1800276.	8.7	40
38	Using the Negative Hyperconjugation Effect of Pentafluorosulfanyl Acceptors to Enhance Two-Photon Absorption in Push–Pull Chromophores. Chemistry of Materials, 2018, 30, 7055-7066.	6.7	39
39	Perovskite–Ion Beam Interactions: Toward Controllable Light Emission and Lasing. ACS Applied Materials & Interfaces, 2019, 11, 15756-15763.	8.0	38
40	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	3.1	37
41	Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15812-15819.	8.0	36
42	Quaternary Alloy Quantum Dots: Toward Lowâ€Threshold Stimulated Emission and Allâ€Solutionâ€Processed Lasers in the Green Region. Advanced Optical Materials, 2015, 3, 652-657.	7.3	35
43	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	3.6	33
44	lodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Scientific Reports, 2017, 7, 14741.	3.3	32
45	An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor. Applied Physics Letters, 2016, 108, .	3.3	31
46	Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing. Materials Horizons, 2014, 1, 529-534.	12.2	30
47	Efficient Energy Transfer under Twoâ€Photon Excitation in a 3D, Supramolecular, Zn(II)â€Coordinated, Selfâ€Assembled Organic Network. Advanced Optical Materials, 2014, 2, 40-47.	7.3	29
48	Reconfigurable Liquid Whispering Gallery Mode Microlasers. Scientific Reports, 2016, 6, 27200.	3.3	29
49	Microlasers Enabled by Softâ€Matter Technology. Advanced Optical Materials, 2019, 7, 1900057.	7. 3	29
50	Biocompatible Twoâ€Photon Absorbing Dipyridyldiketopyrrolopyrroles for Metalâ€ionâ€Mediated Selfâ€Assembly Modulation and Fluorescence Imaging. Advanced Optical Materials, 2016, 4, 746-755.	7.3	26
51	Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods. Journal of Physical Chemistry Letters, 2020, 11, 4817-4825.	4.6	26
52	Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets. Nanoscale Advances, 2019, 1, 4459-4465.	4.6	25
53	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5.6	24
54	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	19.1	24

#	Article	IF	CITATIONS
55	Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes. Applied Physics Letters, $2017, 110, .$	3.3	22
56	Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. Applied Physics Letters, 2019, 115, .	3.3	21
57	Multiphoton Harvesting in an Angular Carbazole-Containing Zn(II)-Coordinated Random Copolymer Mediated by Twisted Intramolecular Charge Transfer State. Macromolecules, 2014, 47, 1316-1324.	4.8	20
58	Elucidating the Unique Hot Carrier Cooling in Two-Dimensional Inorganic Halide Perovskites: The Role of Out-of-Plane Carrier–Phonon Coupling. Nano Letters, 2022, 22, 2995-3002.	9.1	20
59	Effect of Zn(O,S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Solar Energy, 2015, 115, 396-404.	6.1	18
60	Wavelength dependence of optical nonlinearity of terpyridine-based Zn(II)-coordinated rigid linear polymers. Applied Physics Letters, 2012, 101, 213302.	3.3	17
61	High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. Journal of Materials Chemistry C, 2020, 8, 12632-12637.	5.5	16
62	All-organic luminescent nanodots from corannulene and cyclodextrin nano-assembly: continuous-flow synthesis, non-linear optical properties, and bio-imaging applications. Materials Chemistry Frontiers, 2017, 1, 831-837.	5.9	15
63	Tailoring the EnergyÂManifold of Quasiâ€Twoâ€Dimensional Perovskites for Efficient Carrier Extraction. Advanced Energy Materials, 2022, 12, .	19.5	15
64	Deciphering Ultrafast Carrier Dynamics of Eco-Friendly ZnSeTe-Based Quantum Dots: Toward High-Quality Blue–Green Emitters. Journal of Physical Chemistry Letters, 2021, 12, 11931-11938.	4.6	13
65	Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 2772-2778.	4.6	12
66	Transferable High-Quality Inorganic Perovskites for Optoelectronic Devices by Weak Interaction Heteroepitaxy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19674-19681.	8.0	12
67	Deciphering the excited-state dynamics and multicarrier interactions in perovskite core–shell type hetero-nanocrystals. Nanoscale, 2021, 13, 292-299.	5.6	12
68	Perovskite photodetectors for flexible electronics: Recent advances and perspectives. Applied Materials Today, 2022, 28, 101509.	4.3	12
69	Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance. Journal of Materials Chemistry C, 2018, 6, 7311-7316.	5.5	11
70	Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications. Optics Express, 2017, 25, 2618.	3.4	10
71	Halide Perovskite Lateral Heterostructures for Energy Routing Based Photonic Applications. Advanced Optical Materials, 2020, 8, 2001347.	7.3	10
72	Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	8

#	Article	IF	CITATIONS
73	Excited-state regulation in eco-friendly ZnSeTe-based quantum dots by cooling engineering. Science China Materials, 2022, 65, 1569-1576.	6.3	8
74	Inâ€Situ and Reversible Enhancement of Photoluminescence from CsPbBr ₃ Nanoplatelets by Electrical Bias. Advanced Optical Materials, 2021, 9, 2100346.	7.3	7
75	Hybrids of perovskite nanocrystals and SiO2 microfiber for robust and long-haul transmittable fiber lasers. Applied Physics Letters, 2021, 119, .	3.3	7
76	Constructing Urbach-Tail-Free and Low-Threshold Perovskite Heteronanowire Lasers toward All-Optical Switching. ACS Photonics, 2022, 9, 459-465.	6.6	6
77	Photophysical investigation of charge recombination in CdS/ZnO layers of Culn(S,Se) < sub > 2 < /sub > solar cell. RSC Advances, 2014, 4, 58372-58376.	3.6	5
78	Manipulating Optical Properties of ZnO/Ga:ZnO Core–Shell Nanorods Via Spatially Tailoring Electronic Bandgap. Advanced Optical Materials, 2015, 3, 1066-1071.	7.3	5
79	Unusual electric field-induced optical behaviors in cesium lead bromide perovskites. Applied Physics Letters, 2019, 115, .	3.3	5
80	Microfibers Doped with Perovskite Nanocrystals for Ultralow-Loss Waveguides. ACS Applied Nano Materials, 2019, 2, 6585-6591.	5.0	4
81	Robust Wavelength-Converting and Lasing Media from Wafer-Scale Inorganic Perovskites Enabled by a Protective Surface Layer. Journal of Physical Chemistry C, 2020, 124, 8341-8346.	3.1	4
82	Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Physical Review A, 2020, 101 , .	2.5	4
83	Coherent vibrational dynamics of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NbO</mml:mi><mml:mn>2<td>ıl:maxk/m</td><td>ml:រង្ធsub></td></mml:mn></mml:msub></mml:math>	ıl:m a xk/m	ml:រង្ធsub>
84	High-Quality Wave-Chaotic Microlasers from Deformed Halide Perovskite Cavities. ACS Photonics, 2022, 9, 2431-2437.	6.6	3
85	Nonlinear Optics: Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network (Advanced Optical Materials 1/2014). Advanced Optical Materials, 2014, 2, 39-39.	7.3	2
86	Unusual Fluorescent Properties of Stilbene Units and CdZnS/ZnS Quantum Dots Nanocomposites: Whiteâ€Light Emission in Solution versus Lightâ€Harvesting in Films. Macromolecular Chemistry and Physics, 2016, 217, 24-31.	2.2	2
87	Tackling the hurdles of electrically pumped colloidal quantum dot lasers. Science China Materials, 2018, 61, 765-766.	6.3	1
88	Mass production of self-passivated perovskite microlaser particles by solution-phase processing for gas sensors. APL Photonics, 2022, 7, 016103.	5.7	1
89	Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods. , 2014, , .		0
90	Tuning liquid whispering gallery mode microlasers by surface tension. , 2016, , .		0

YUE WANG

#	Article	IF	CITATIONS
91	Optical-field induced SU(2) pair potential in caesium lead halide perovskites. International Journal of Modern Physics B, 2021, 35, 2150030.	2.0	0
92	Perovskite Quantum Dots Based Lasing-Prospects and Challenges. Springer Series in Materials Science, 2020, , 279-335.	0.6	0