
Norasikin Ahmad Ludin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7227786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 31, 386-396.	16.4	316
2	Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Applied Catalysis B: Environmental, 2018, 234, 296-310.	20.2	301
3	Graphitic carbon nitride (g-C ₃ N ₄) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22346-22380.	10.3	244
4	Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 2018, 96, 11-28.	16.4	236
5	A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering, 2018, 6, 7411-7425.	6.7	196
6	The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 2018, 6, 682-712.	5.5	172
7	A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 37, 397-407.	16.4	163
8	A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15788-15822.	10.3	150
9	Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy Reviews, 2016, 65, 183-213.	16.4	139
10	Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 130-137.	3.9	103
11	Efficient Photoelectrochemical Performance of γ Irradiated g-C ₃ N ₄ and Its g-C ₃ N ₄ @BiVO ₄ Heterojunction for Solar Water Splitting. Journal of Physical Chemistry C, 2019, 123, 9013-9026.	3.1	93
12	A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renewable and Sustainable Energy Reviews, 2019, 99, 83-99.	16.4	83
13	Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer, 2021, 230, 124092.	3.8	81
14	Carbonaceous Materials and Their Advances as a Counter Electrode in Dyeâ€Sensitized Solar Cells: Challenges and Prospects. ChemSusChem, 2015, 8, 1510-1533.	6.8	77
15	Application of dyes extracted from Alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 487-498.	3.9	73
16	Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film. Journal of Alloys and Compounds, 2018, 769, 130-135.	5.5	60
17	Quantum dots processed by SILAR for solar cell applications. Solar Energy, 2018, 163, 256-270.	6.1	56
18	The Role of Physical Techniques on the Preparation of Photoanodes for Dye Sensitized Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-19.	2.5	52

#	Article	IF	CITATIONS
19	Natural dye extracted from Pandannus amaryllifolius leaves as sensitizer in fabrication of dye-sensitized solar cells. International Journal of Electrochemical Science, 2017, 12, 747-761.	1.3	49
20	Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion. Journal of Alloys and Compounds, 2020, 818, 152916.	5.5	49
21	Effect of temperature on the properties of SnO 2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Solar Energy, 2017, 158, 474-482.	6.1	45
22	Towards high performance perovskite solar cells: A review of morphological control and HTM development. Applied Materials Today, 2018, 13, 69-82.	4.3	43
23	Malaysian oil palm plantation sector: exploiting renewable energy toward sustainability production. Journal of Cleaner Production, 2014, 65, 9-15.	9.3	36
24	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part I – Material developments. Solar Energy, 2016, 137, 371-378.	6.1	34
25	Performance evaluation of renewable energy R&D activities in Malaysia. Renewable Energy, 2021, 163, 544-560.	8.9	34
26	Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. Industrial Crops and Products, 2018, 113, 406-413.	5.2	32
27	Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	3.6	31
28	Simultaneous enhancement in light absorption and charge transportation of bismuth vanadate (BiVO4) photoanode via microwave annealing. Materials Letters, 2018, 233, 67-70.	2.6	31
29	Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 23-31.	3.9	30
30	Electrodeposited p-type Co ₃ O ₄ with high photoelectrochemical performance in aqueous medium. RSC Advances, 2015, 5, 36820-36827.	3.6	27
31	Effect of Film Thickness on Photoelectrochemical Performance of SnO ₂ Prepared via AACVD. Physica Status Solidi (B): Basic Research, 2018, 255, 1700570.	1.5	27
32	Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Sustainability, 2021, 13, 396.	3.2	27
33	Heterojunction Cr2O3/CuO:Ni photocathodes for enhanced photoelectrochemical performance. RSC Advances, 2016, 6, 56885-56891.	3.6	25
34	Utilization of Natural Dyes from Zingiber officinale Leaves and Clitoria ternatea Flowers to Prepare New Photosensitisers for Dye-Sensitised Solar Cells. International Journal of Electrochemical Science, 2018, 13, 7451-7465.	1.3	22
35	Renewable energy performance evaluation studies using the data envelopment analysis (DEA): A systematic review. Journal of Renewable and Sustainable Energy, 2020, 12, .	2.0	19
36	Influence of ethylene glycol on efficient photoelectrochemical activity of BiVO ₄ photoanode via AACVD. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2910-2914.	1.8	15

#	Article	IF	CITATIONS
37	Optimization of dye extraction from Cordyline fruticosa via response surface methodology to produce a natural sensitizer for dye-sensitized solar cells. Results in Physics, 2016, 6, 520-529.	4.1	15
38	Environmental performance of window-integrated systems using dye-sensitised solar module technology in Malaysia. Solar Energy, 2019, 187, 379-392.	6.1	15
39	Hydrophilic carbon/TiO2 colloid composite: a potential counter electrode for dye-sensitized solar cells. Journal of Applied Electrochemistry, 2016, 46, 259-266.	2.9	13
40	Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. AIP Conference Proceedings, 2017, , .	0.4	13
41	An overview of coâ€catalysts on metal oxides for photocatalytic water splitting. International Journal of Energy Research, 2022, 46, 11596-11619.	4.5	13
42	The Effect of Chenodeoxycholic Acid (CDCA) in Mangosteen (Garcinia mangostana) Pericarps Sensitizer for Dye-Sensitized Solar Cell (DSSC). Journal of Physics: Conference Series, 2018, 1083, 012018.	0.4	11
43	Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	11
44	Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. Nanomaterials, 2021, 11, 3186.	4.1	10
45	An Efficient Metal-Free Hydrophilic Carbon as a Counter Electrode for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2016, 2016, 1-7.	2.5	9
46	The extraction and absorption study of natural dye from Areca catechu for dye sensitized solar cell application. AIP Conference Proceedings, 2017, , .	0.4	9
47	Energy levels of natural sensitizers extracted from rengas (Gluta spp.) and mengkulang (Heritiera) Tj ETQq1 1 0.	784314 rg 3.6	BT ₇ /Overlock
48	Effect of Solvents on Extraction and Adsorption of Natural Dyes Extracted from Cordyline fruticosa and Hylocereus polyrhizus. Asian Journal of Chemistry, 2014, 26, 6285-6288.	0.3	6
49	Compatibility between compact and mesoporous TiO2 layers on the optimization of photocurrent density in photoelectrochemical cells. Surfaces and Interfaces, 2019, 17, 100341.	3.0	6
50	Humidity sensing of thin film perovskite nanostructure for improved sensitivity and optical performance. Journal of Materials Research and Technology, 2020, 9, 13274-13281.	5.8	6
51	Effects of Iodide/Triiodide (I–/I3 –) Ratios on Palm Based Polyurethane Polymer Electrolyte for Solid-State Dye-Sensitized Solar Cell. Jurnal Kejuruteraan, 2018, SI1, 63-68.	0.3	6
52	Optoelectronic and morphology properties of perovskite/silicon interface layer for tandem solar cell application. Surface and Interface Analysis, 2020, 52, 422-432.	1.8	6
53	Green economy models and energy policies towards sustainable development in Malaysia: a review. International Journal of Green Economics, 2016, 10, 89.	0.8	5
54	Tin and germanium substitution in lead free perovskite solar cell: current status and future trends. IOP Conference Series: Materials Science and Engineering, 2020, 957, 012057.	0.6	5

#	Article	IF	CITATIONS
55	Peningkatan Kecekapan Pemisahan Air Menggunakan g-C3N4 yang Disinar Gama. Sains Malaysiana, 2019, 48, 1129-1135.	0.5	5
56	Green economy: assessing the greenness of the Malaysian economy. International Journal of Green Economics, 2012, 6, 226.	0.8	4
57	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part II – Synthesis and deposition. Solar Energy, 2016, 139, 309-317.	6.1	4
58	Perspective of Agriculture Wastes Usage as a Resource. Advanced Materials Research, 0, 550-553, 2246-2254.	0.3	3
59	Metal Oxide BiVO ₄ as Photoelectrode in Photoelectrochemical Solar Water Oxidation. Solid State Phenomena, 0, 253, 41-58.	0.3	3
60	Kajian Elektrolit Polimer berasaskan Getah Asli Terubah Suai (MG49) dalam Sel Suria Terpeka Pewarna. Sains Malaysiana, 2018, 47, 2667-2676.	0.5	3
61	Performance-Enhancing Sulfur-Doped TiO2 Photoanodes for Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 429.	2.5	3
62	Characterizations of natural dye from garcinia mangostana with graphene oxide (GO) as sensitizer in dye-sensitizer solar cells. AIP Conference Proceedings, 2017, , .	0.4	2
63	Characterization of perovskite layer on various nanostructured silicon wafer. AIP Conference Proceedings, 2017, , .	0.4	2
64	In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation. Results in Physics, 2017, 7, 2183-2193.	4.1	2
65	Light transmission and internal scattering in pulsed laser-etched partially-transparent silicon wafers. Heliyon, 2019, 5, e02790.	3.2	2
66	Enhanced Performance of Quantum Dots Sensitized Solar Cell Utilizing Copper Indium Sulfide and Reduced-Graphene Oxide with the Presence of Silver Sulfide. Sains Malaysiana, 2020, 49, 2997-3005.	0.5	2
67	Micropower system optimization for the telecommunication towers based on various renewable energy sources. International Journal of Electrical and Computer Engineering, 2022, 12, 1069.	0.7	2
68	Properties of Nanostructured Rutile Titanium Dioxide (TiO ₂) Thin Film Deposited with Silver Sulfide (Ag ₂ S) Quantum Dots as Photoanode for Solar Photovoltaic. Solid State Phenomena, 0, 290, 329-335.	0.3	1
69	Ambient fabrication of perovskite solar cells through delay-deposition technique. Materials for Renewable and Sustainable Energy, 2021, 10, 1.	3.6	1
70	Electrochemical Properties of Natural Sensitizer from Garcinia mangostana and Archidendron pauciflorum Pericarps for Dye-Sensitized Solar Cell (DSSC) Application. Sains Malaysiana, 2020, 49, 3007-3015.	0.5	1
71	Review on recent performance titanium dioxide for flexible dye sensitized solar cell. , 2017, , .		0
72	Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD). AIP Conference Proceedings, 2018, , .	0.4	0

Norasikin Ahmad Ludin

#	Article	IF	CITATIONS
73	Sustainability and Life-Cycle Cost Analysis of Solar Photovoltaic-Generation Systems in ASEAN Countries. Economics, Law, and Institutions in Asia Pacific, 2021, , 277-302.	0.6	Ο
74	The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia. Springer Proceedings in Physics, 2014, , 337-343.	0.2	0
75	MODIFICATION OF BSF LAYER IN BIFACIAL SOLAR CELL VIA PHOTOSENSITIZATION OF MOLECULES NANOSTRUCTURE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	Ο
76	Analisis Arus-Voltan bagi Pengubahsuaian Proses Fabrikasi Sel Suria Silikon Jenis-P ke atas Wafer Silikon Jenis-N. Sains Malaysiana, 2017, 46, 1943-1949.	0.5	0
77	Kebergantungan Suhu dengan Penggunaan Tiub Kuarza Relau ke atas Sel SuriaDwi-Muka. Sains Malaysiana, 2018, 47, 789-795.	0.5	Ο
78	Effect of silver sulphide (Ag _{2S) layer towards the performance of copper indium sulphide (CuInS_{2) quantum dots sensitised solar cell. International Journal of Nanotechnology, 2020, 17, 795.}}	0.2	0