
Guangping Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7227770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019, 18, 358-378.	21.5	1,267
2	Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. Journal of Virology, 2004, 78, 6381-6388.	1.5	900
3	Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 2016, 34, 328-333.	9.4	732
4	Worldwide Epidemiology of Neutralizing Antibodies to Adenoâ€Associated Viruses. Journal of Infectious Diseases, 2009, 199, 381-390.	1.9	632
5	Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 2021, 6, 53.	7.1	514
6	Gene Therapy Vectors Based on Adeno-Associated Virus Type 1. Journal of Virology, 1999, 73, 3994-4003.	1.5	484
7	New Recombinant Serotypes of AAV Vectors. Current Gene Therapy, 2005, 5, 285-297.	0.9	461
8	Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6081-6086.	3.3	293
9	Adenovirus-Mediated Somatic Genome Editing of <i>Pten</i> by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Human Gene Therapy, 2015, 26, 432-442.	1.4	291
10	CRISPR-Based Therapeutic Genome Editing: Strategies and InÂVivo Delivery by AAV Vectors. Cell, 2020, 181, 136-150.	13.5	289
11	AAV-expressed eCD4-lg provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.	13.7	265
12	Several rAAV Vectors Efficiently Cross the Blood–brain Barrier and Transduce Neurons and Astrocytes in the Neonatal Mouse Central Nervous System. Molecular Therapy, 2011, 19, 1440-1448.	3.7	252
13	Adeno-Associated Virus (AAV) Serotype 9 Provides Global Cardiac Gene Transfer Superior to AAV1, AAV6, AAV7, and AAV8 in the Mouse and Rat. Human Gene Therapy, 2008, 19, 1359-1368.	1.4	247
14	Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity, 2020, 52, 167-182.e7.	6.6	244
15	Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nature Communications, 2017, 8, 359.	5.8	210
16	Hybrid Vectors Based on Adeno-Associated Virus Serotypes 2 and 5 for Muscle-Directed Gene Transfer. Journal of Virology, 2001, 75, 6199-6203.	1.5	203
17	Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nature Medicine, 2006, 12, 967-971.	15.2	193
18	Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood, 2004, 103, 1253-1260.	0.6	188

#	Article	IF	CITATIONS
19	Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nature Methods, 2012, 9, 403-409.	9.0	188
20	Global CNS Transduction of Adult Mice by Intravenously Delivered rAAVrh.8 and rAAVrh.10 and Nonhuman Primates by rAAVrh.10. Molecular Therapy, 2014, 22, 1299-1309.	3.7	179
21	Biology of AAV Serotype Vectors in Liver-Directed Gene Transfer to Nonhuman Primates. Molecular Therapy, 2006, 13, 77-87.	3.7	161
22	Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 2021, 12, 2121.	5.8	155
23	The PPARα-FGF21 Hormone Axis Contributes to Metabolic Regulation by the Hepatic JNK Signaling Pathway. Cell Metabolism, 2014, 20, 512-525.	7.2	149
24	MicroRNA-regulated, Systemically Delivered rAAV9: A Step Closer to CNS-restricted Transgene Expression. Molecular Therapy, 2011, 19, 526-535.	3.7	143
25	AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1688-E1697.	3.3	142
26	MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice andÂPatients From Ethanol-Induced Liver Disease. Gastroenterology, 2018, 154, 238-252.e7.	0.6	128
27	Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nature Communications, 2015, 6, 6770.	5.8	124
28	High Levels of Persistent Expression of α1-Antitrypsin Mediated by the Nonhuman Primate Serotype rh.10 Adeno-associated Virus Despite Preexisting Immunity to Common Human Adeno-associated Viruses. Molecular Therapy, 2006, 13, 67-76.	3.7	121
29	Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Science Translational Medicine, 2021, 13, .	5.8	99
30	Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity, 2019, 50, 567-575.e5.	6.6	96
31	Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Molecular Therapy, 2016, 24, 726-735.	3.7	93
32	Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects. Molecular Therapy - Methods and Clinical Development, 2014, 1, 9.	1.8	92
33	Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nature Communications, 2017, 8, 14152.	5.8	91
34	Adeno-Associated Virus-Mediated Gene Transfer to Nonhuman Primate Liver Can Elicit Destructive Transgene-Specific T Cell Responses. Human Gene Therapy, 2009, 20, 930-942.	1.4	88
35	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
36	Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 668-681.	1.4	81

#	Article	IF	CITATIONS
37	The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opinion on Drug Delivery, 2014, 11, 345-364.	2.4	80
38	Manufacturing and Characterization of a Recombinant Adeno-Associated Virus Type 8 Reference Standard Material. Human Gene Therapy, 2014, 25, 977-987.	1.4	80
39	Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Human Gene Therapy, 2016, 27, 687-699.	1.4	79
40	Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Human Molecular Genetics, 2015, 24, 4353-4364.	1.4	78
41	A Single Intravenous rAAV Injection as Late as P20 Achieves Efficacious and Sustained CNS Gene Therapy in Canavan Mice. Molecular Therapy, 2013, 21, 2136-2147.	3.7	77
42	AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity. PLoS Pathogens, 2015, 11, e1005090.	2.1	77
43	Short DNA Hairpins Compromise Recombinant Adeno-Associated Virus Genome Homogeneity. Molecular Therapy, 2017, 25, 1363-1374.	3.7	74
44	Artificial miRNAs Reduce Human Mutant Huntingtin Throughout the Striatum in a Transgenic Sheep Model of Huntington's Disease. Human Gene Therapy, 2018, 29, 663-673.	1.4	74
45	Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. ELife, 2016, 5, .	2.8	74
46	Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors. Molecular Therapy, 2015, 23, 1867-1876.	3.7	73
47	Percutaneous Transendocardial Delivery of Self-complementary Adeno-associated Virus 6 Achieves Global Cardiac Gene Transfer in Canines. Molecular Therapy, 2008, 16, 1953-1959.	3.7	72
48	Overcoming innate immune barriers that impede AAV gene therapy vectors. Journal of Clinical Investigation, 2021, 131, .	3.9	72
49	Adeno-Associated Virus Type 2 and Hepatocellular Carcinoma?. Human Gene Therapy, 2015, 26, 779-781.	1.4	71
50	Recombinant adenoâ€associated virus–mediated inhibition of microRNAâ€21 protects mice against the lethal schistosome infection by repressing both ILâ€13 and transforming growth factor beta 1 pathways. Hepatology, 2015, 61, 2008-2017.	3.6	71
51	Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Molecular Therapy, 2016, 24, 206-216.	3.7	70
52	Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nature Communications, 2019, 10, 2958.	5.8	70
53	MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 2016, 7, 12639.	5.8	66
54	Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nature Communications, 2018, 9, 412.	5.8	66

#	Article	IF	CITATIONS
55	State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discovery Medicine, 2014, 18, 151-61.	0.5	66
56	Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Molecular Therapy, 2022, 30, 2646-2663.	3.7	65
57	Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Human Gene Therapy, 2018, 29, 492-506.	1.4	64
58	Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Molecular Therapy, 2016, 24, 76-86.	3.7	60
59	Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. Molecular Genetics and Metabolism, 2011, 104, 395-403.	0.5	58
60	Adeno-associated Virus Genome Population Sequencing Achieves Full Vector Genome Resolution and Reveals Human-Vector Chimeras. Molecular Therapy - Methods and Clinical Development, 2018, 9, 130-141.	1.8	58
61	CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Molecular Therapy - Nucleic Acids, 2016, 5, e338.	2.3	56
62	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	4.6	56
63	<i>In Vivo</i> Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Human Gene Therapy, 2018, 29, 853-860.	1.4	54
64	State-of-the-art human gene therapy: part I. Gene delivery technologies. Discovery Medicine, 2014, 18, 67-77.	0.5	54
65	Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nature Communications, 2021, 12, 6267.	5.8	52
66	Intravitreal AAV2.COMP-Ang1 Prevents Neurovascular Degeneration in a Murine Model of Diabetic Retinopathy. Diabetes, 2015, 64, 4247-4259.	0.3	51
67	Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biology, 2019, 20, 276.	3.8	50
68	Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight, 2017, 2, e90807.	2.3	49
69	Transendocardial Delivery of AAV6 Results in Highly Efficient and Global Cardiac Gene Transfer in Rhesus Macaques. Human Gene Therapy, 2011, 22, 979-984.	1.4	46
70	Production and Discovery of Novel Recombinant Adenoâ€Associated Viral Vectors. Current Protocols in Microbiology, 2012, 26, Unit14D.1.	6.5	46
71	Gene Therapy Using a <i>miniCEP290</i> Fragment Delays Photoreceptor Degeneration in a Mouse Model of Leber Congenital Amaurosis. Human Gene Therapy, 2018, 29, 42-50.	1.4	46
72	Complete nucleotide sequences and genome organization of four chimpanzee adenoviruses. Virology, 2004, 324, 361-372.	1.1	45

#	Article	IF	CITATIONS
73	AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4418-27.	3.3	45
74	Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2022, 110, 516-531.e6.	3.8	45
75	AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature, 2022, 604, 343-348.	13.7	44
76	Adenovirus–Adeno-Associated Virus Hybrid for Large-Scale Recombinant Adeno-Associated Virus Production. Human Gene Therapy, 2009, 20, 922-929.	1.4	43
77	Cardiac Gene Transfer of Short Hairpin RNA Directed Against Phospholamban Effectively Knocks Down Gene Expression but Causes Cellular Toxicity in Canines. Human Gene Therapy, 2011, 22, 969-977.	1.4	43
78	A Rationally Engineered Capsid Variant of AAV9 for Systemic CNS-Directed and Peripheral Tissue-Detargeted Gene Delivery in Neonates. Molecular Therapy - Methods and Clinical Development, 2018, 9, 234-246.	1.8	42
79	Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Molecular Therapy, 2019, 27, 650-660.	3.7	42
80	Recombinant Adeno-Associated Virus Integration Sites in Murine Liver After Ornithine Transcarbamylase Gene Correction. Human Gene Therapy, 2013, 24, 520-525.	1.4	40
81	Novel Roles of GATA4/6 in the Postnatal Heart Identified through Temporally Controlled, Cardiomyocyte-Specific Gene Inactivation by Adeno-Associated Virus Delivery of Cre Recombinase. PLoS ONE, 2015, 10, e0128105.	1.1	39
82	Cutting Edge: DNA in the Lung Microenvironment during Influenza Virus Infection Tempers Inflammation by Engaging the DNA Sensor AIM2. Journal of Immunology, 2016, 196, 29-33.	0.4	38
83	Adeno-Associated Virus Neutralizing Antibodies in Large Animals and Their Impact on Brain Intraparenchymal Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2018, 11, 65-72.	1.8	38
84	Comparative Analysis of the Capsid Structures of AAVrh.10, AAVrh.39, and AAV8. Journal of Virology, 2020, 94, .	1.5	38
85	Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections. Human Gene Therapy, 2016, 27, 700-711.	1.4	37
86	Inhibition of miR-378a-3p by Inflammation Enhances IL-33 Levels: A Novel Mechanism of Alarmin Modulation in Ulcerative Colitis. Frontiers in Immunology, 2019, 10, 2449.	2.2	37
87	AAV-Genome Population Sequencing of Vectors Packaging CRISPR Components Reveals Design-Influenced Heterogeneity. Molecular Therapy - Methods and Clinical Development, 2020, 18, 639-651.	1.8	37
88	Molecular Analysis of Vector Genome Structures After Liver Transduction by Conventional and Self-Complementary Adeno-Associated Viral Serotype Vectors in Murine and Nonhuman Primate Models. Human Gene Therapy, 2010, 21, 750-761.	1.4	36
89	Small Intestine but Not Liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) Deficiency Has a Dominant Effect on Plasma Lipid Metabolism. Journal of Biological Chemistry, 2016, 291, 7651-7660.	1.6	36
90	Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nature Biotechnology, 2018, 36, 839-842.	9.4	36

#	Article	IF	CITATIONS
91	Single-cell sequencing of neonatal uterus reveals an Misr2+ endometrial progenitor indispensable for fertility. ELife, 2019, 8, .	2.8	36
92	Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1. Molecular Therapy, 2016, 24, 156-165.	3.7	35
93	AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Science Translational Medicine, 2019, 11, .	5.8	35
94	Quantitative and Digital Droplet-Based AAV Genome Titration. Methods in Molecular Biology, 2019, 1950, 51-83.	0.4	35
95	Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
96	Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Human Gene Therapy, 2022, 33, 371-388.	1.4	35
97	Inhibition or Stimulation of Autophagy Affects Early Formation of Lipofuscin-Like Autofluorescence in the Retinal Pigment Epithelium Cell. International Journal of Molecular Sciences, 2017, 18, 728.	1.8	33
98	Down-regulation of microRNA-203-3p initiates type 2 pathology during schistosome infection via elevation of interleukin-33. PLoS Pathogens, 2018, 14, e1006957.	2.1	33
99	Introducing Genes into Mammalian Cells: Viral Vectors. Cold Spring Harbor Protocols, 2020, 2020, pdb.top095513.	0.2	32
100	Bone-Targeting AAV-Mediated Gene Silencing in Osteoclasts for Osteoporosis Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 17, 922-935.	1.8	32
101	Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival. Molecular and Cellular Neurosciences, 2014, 58, 22-28.	1.0	31
102	Intracranial <scp>AAV</scp> â€ <scp>IFN</scp> â€Î² gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Molecular Oncology, 2017, 11, 180-193.	2.1	31
103	Adeno-Associated Virus-Mediated MicroRNA Delivery and Therapeutics. Seminars in Liver Disease, 2015, 35, 081-088.	1.8	30
104	Structural characterization of a novel human adeno-associated virus capsid with neurotropic properties. Nature Communications, 2020, 11, 3279.	5.8	30
105	Functional Upregulation of α4* Nicotinic Acetylcholine Receptors in VTA GABAergic Neurons Increases Sensitivity to Nicotine Reward. Journal of Neuroscience, 2015, 35, 8570-8578.	1.7	29
106	Long-Term Delivery of an Anti-SIV Monoclonal Antibody With AAV. Frontiers in Immunology, 2020, 11, 449.	2.2	29
107	Adenine Base Editing <i>In Vivo</i> with a Single Adeno-Associated Virus Vector. , 2022, 1, 285-299.		27
108	Fetal Gene Therapy Using a Single Injection of Recombinant AAV9 Rescued SMA Phenotype in Mice. Molecular Therapy, 2019, 27, 2123-2133.	3.7	26

#	Article	IF	CITATIONS
109	Conditional, inducible gene silencing in dopamine neurons reveals a sex-specific role for Rit2 GTPase in acute cocaine response and striatal function. Neuropsychopharmacology, 2020, 45, 384-393.	2.8	26
110	A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes and Development, 2021, 35, 133-146.	2.7	26
111	Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. JCl Insight, 2019, 4, .	2.3	26
112	A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Molecular Neurobiology, 2016, 53, 3235-3248.	1.9	25
113	AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Molecular Therapy, 2022, 30, 238-243.	3.7	25
114	Transcriptome Profiling of Neovascularized Corneas Reveals miR-204 as a Multi-target Biotherapy Deliverable by rAAVs. Molecular Therapy - Nucleic Acids, 2018, 10, 349-360.	2.3	24
115	Gene Transfer to the CNS Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2013, 29, Unit14D.5.	6.5	22
116	A Scalable and Accurate Method for Quantifying Vector Genomes of Recombinant Adeno-Associated Viruses in Crude Lysate. Human Gene Therapy Methods, 2017, 28, 139-147.	2.1	22
117	Gene Transfer in Skeletal and Cardiac Muscle Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2013, 28, Unit 14D.3.	6.5	21
118	Large-Scale Production of Adeno-Associated Viral Vector Serotype-9 Carrying the Human Survival Motor Neuron Gene. Molecular Biotechnology, 2016, 58, 30-36.	1.3	21
119	Intrathecal Adeno-Associated Viral Vector-Mediated Gene Delivery for Adrenomyeloneuropathy. Human Gene Therapy, 2019, 30, 544-555.	1.4	21
120	Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders. Methods in Molecular Biology, 2016, 1382, 429-465.	0.4	20
121	Intravenous Infusion of AAV for Widespread Gene Delivery to the Nervous System. Methods in Molecular Biology, 2019, 1950, 143-163.	0.4	20
122	Effective and Accurate Gene Silencing by a Recombinant AAV-Compatible MicroRNA Scaffold. Molecular Therapy, 2020, 28, 422-430.	3.7	20
123	Durability of transgene expression after rAAV gene therapy. Molecular Therapy, 2022, 30, 1364-1380.	3.7	20
124	Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo. Frontiers in Cellular Neuroscience, 2016, 10, 262.	1.8	19
125	Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection. Human Gene Therapy, 2017, 28, 464-481.	1.4	19
126	Slow Intrathecal Injection of rAAVrh10 Enhances its Transduction of Spinal Cord and Therapeutic Efficacy in a Mutant SOD1 Model of ALS. Neuroscience, 2017, 365, 192-205.	1.1	19

#	Article	IF	CITATIONS
127	Exploiting Natural Diversity of AAV for the Design of Vectors with Novel Properties. Methods in Molecular Biology, 2012, 807, 93-118.	0.4	18
128	rAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended Pathology Beyond the Central Nervous System. Molecular Therapy, 2016, 24, 1030-1041.	3.7	18
129	Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Scientific Reports, 2017, 7, 40336.	1.6	18
130	MicroRNA-96 Promotes Schistosomiasis Hepatic Fibrosis in Mice by Suppressing Smad7. Molecular Therapy - Methods and Clinical Development, 2018, 11, 73-82.	1.8	18
131	Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. Molecular Therapy - Methods and Clinical Development, 2020, 16, 94-102.	1.8	18
132	Production of Recombinant Adeno-Associated Viruses (rAAVs) by Transient Transfection. Cold Spring Harbor Protocols, 2020, 2020, pdb.prot095596.	0.2	18
133	Systemic AAV9-IFNβ gene delivery treats highly invasive glioblastoma. Neuro-Oncology, 2016, 18, now097.	0.6	17
134	A Preclinical Study in Rhesus Macaques for Cystic Fibrosis to Assess Gene Transfer and Transduction by AAV1 and AAV5 with a Dual-Luciferase Reporter System. Human Gene Therapy Clinical Development, 2017, 28, 145-156.	3.2	16
135	Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens?. Frontiers in Immunology, 2021, 12, 673699.	2.2	16
136	Recombinant AAV Vectors for Enhanced Expression of Authentic IgG. PLoS ONE, 2016, 11, e0158009.	1.1	16
137	Modulating Immune Responses to AAV by expanded polyclonal T-regulatory cells and capsid specific chimeric antigen receptor T-regulatory cells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 490-506.	1.8	16
138	Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. ELife, 2021, 10, .	2.8	15
139	Production of High-Titer Retrovirus and Lentivirus Vectors. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot095687.	0.2	14
140	Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Annals of Neurology, 2021, 90, 640-652.	2.8	14
141	Gene Transfer in the Lung Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2012, 26, Unit14D.2.	6.5	13
142	Novel Combinatorial MicroRNA-Binding Sites in AAV Vectors Synergistically Diminish Antigen Presentation and Transgene Immunity for Efficient and Stable Transduction. Frontiers in Immunology, 2021, 12, 674242.	2.2	13
143	High concordance of ELISA and neutralization assays allows for the detection of antibodies to individual AAV serotypes. Molecular Therapy - Methods and Clinical Development, 2022, 24, 199-206.	1.8	13
144	Two-Plasmid Packaging System for Recombinant Adeno-Associated Virus. BioResearch Open Access, 2020, 9, 219-228.	2.6	12

#	Article	IF	CITATIONS
145	Next-generation strategies for gene-targeted therapies of central nervous system disorders: A workshop summary. Molecular Therapy, 2021, 29, 3332-3344.	3.7	12
146	Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death and Differentiation, 2022, 29, 1625-1638.	5.0	12
147	Analysis of Recombinant Adeno-Associated Virus (rAAV) Purity Using Silver-Stained SDS-PAGE. Cold Spring Harbor Protocols, 2020, 2020, pdb.prot095679.	0.2	11
148	Canavan Disease as a Model for Gene Therapy-Mediated Myelin Repair. Frontiers in Cellular Neuroscience, 2021, 15, 661928.	1.8	11
149	Targeted Nanoparticleâ€Mediated Gene Therapy Mimics Oncolytic Virus for Effective Melanoma Treatment. Advanced Functional Materials, 2018, 28, 1800173.	7.8	10
150	Assessment of a passive immunity mouse model to quantitatively analyze the impact of neutralizing antibodies on adeno-associated virus-mediated gene transfer. Journal of Immunological Methods, 2013, 387, 114-120.	0.6	9
151	Efficient Transduction of Corneal Stroma by Adeno-Associated Viral Serotype Vectors for Implications in Gene Therapy of Corneal Diseases. Human Gene Therapy, 2016, 27, 598-608.	1.4	9
152	Adeno-associated Virus Serotype Vectors Efficiently Transduce Normal Prostate Tissue and Prostate Cancer Cells. European Urology, 2016, 69, 179-181.	0.9	9
153	Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Molecular Therapy, 2017, 25, 2323-2331.	3.7	9
154	Selective Neuronal Uptake and Distribution of AAVrh8, AAV9, and AAVrh10 in Sheep After Intra-Striatal Administration. Journal of Huntington's Disease, 2018, 7, 309-319.	0.9	9
155	Evaluation of portable colposcopy and human papillomavirus testing for screening of cervical cancer in rural China. International Journal of Gynecological Cancer, 2019, 29, 23-27.	1.2	9
156	Purification of Recombinant Adeno-Associated Viruses (rAAVs) by Cesium Chloride Gradient Sedimentation. Cold Spring Harbor Protocols, 2020, 2020, pdb.prot095604.	0.2	9
157	Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage. International Journal of Medical Sciences, 2021, 18, 3353-3360.	1.1	9
158	Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Molecular Therapy, 2022, 30, 2416-2428.	3.7	9
159	Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space. Human Gene Therapy Methods, 2018, 29, 75-85.	2.1	8
160	Impact of neutralizing antibodies against AAV is a key consideration in gene transfer to nonhuman primates. Nature Medicine, 2018, 24, 699-699.	15.2	8
161	Titration of Recombinant Adeno-Associated Virus (rAAV) Genome Copy Number Using Real-Time Quantitative Polymerase Chain Reaction (qPCR). Cold Spring Harbor Protocols, 2020, 2020, pdb.prot095646.	0.2	8
162	AAV-Mediated Gene Therapy for Glycosphingolipid Biosynthesis Deficiencies. Trends in Molecular Medicine, 2021, 27, 520-523.	3.5	8

#	Article	IF	CITATIONS
163	rAAV-delivered PTEN therapeutics for prostate cancer. Molecular Therapy - Nucleic Acids, 2022, 27, 122-132.	2.3	8
164	Gene Delivery to Nonhuman Primate Preimplantation Embryos Using Recombinant Adenoâ€Associated Virus. Advanced Science, 2019, 6, 1900440.	5.6	7
165	Glycoengineering of AAV-delivered monoclonal antibodies yields increased ADCC activity. Molecular Therapy - Methods and Clinical Development, 2021, 20, 204-217.	1.8	7
166	Large-scale molecular epidemiological analysis of AAV in a cancer patient population. Oncogene, 2021, 40, 3060-3071.	2.6	7
167	Efficacious, safe, and stable inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. Molecular Therapy - Methods and Clinical Development, 2021, 22, 107-121.	1.8	7
168	Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette. Molecular Therapy - Methods and Clinical Development, 2021, 23, 98-107.	1.8	7
169	Nanoparticles co-delivering pVSVMP and pIL12 for synergistic gene therapy of colon cancer. RSC Advances, 2017, 7, 32613-32623.	1.7	6
170	High-Throughput Quantification of <i>In Vivo</i> Adeno-Associated Virus Transduction with Barcoded Non-Coding RNAs. Human Gene Therapy, 2019, 30, 946-956.	1.4	6
171	Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Human Gene Therapy, 2022, 33, 782-788.	1.4	6
172	Making the White Matter Matters: Progress in Understanding Canavan's Disease and Therapeutic Interventions Through Eight Decades. JIMD Reports, 2014, 19, 11-22.	0.7	5
173	Is smaller better? Vaccine targeting recombinant receptor-binding domain might hold the key for mass production of effective prophylactics to fight the COVID-19 pandemic. Signal Transduction and Targeted Therapy, 2020, 5, 222.	7.1	5
174	Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Human Gene Therapy, 2021, 32, 649-666.	1.4	5
175	Comparison of the efficacy of five adeno-associated virus vectors for transducing dorsal raphé nucleus cells in the mouse. Journal of Neuroscience Methods, 2014, 235, 189-192.	1.3	4
176	7. High-Throughput Sequencing of AAV Proviral Libraries from the Human Population Reveals Novel Variants with Unprecedented Intra-and Inter-Tissue Diversity. Molecular Therapy, 2016, 24, S4.	3.7	4
177	The Sodium Channel β4 Auxiliary Subunit Selectively Controls Long-Term Depression in Core Nucleus Accumbens Medium Spiny Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 17.	1.8	4
178	Taking a Hint from Structural Biology: To Better Understand AAV Transport across the BBB. Molecular Therapy, 2018, 26, 336-338.	3.7	3
179	Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue. Prostate, 2017, 77, 1265-1270.	1.2	2
180	rAAV-based and intraprostatically delivered miR-34a therapeutics for efficient inhibition of prostate cancer progression. Gene Therapy, 2022, 29, 418-424.	2.3	2

#	Article	IF	CITATIONS
181	Examination of the Blood Brain Barrier Integrity in a Mouse Model of the Neurodegenerative Canavan's Disease. Journal of Neurological Disorders, 2014, 02, .	0.1	1
182	Editorial: "AAV Gene Therapy: Immunology and Immunotherapeutics― Frontiers in Immunology, 2021, 12, 822389.	2.2	1
183	Viral Vectors for Muscle Gene Therapy. , 2019, , 179-192.		0
184	Reuben Matalon, MD, PhD, FACMG (1935–2021). Human Gene Therapy, 2022, 33, 221-222.	1.4	0