Stephan Lutter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7227710/publications.pdf Version: 2024-02-01

STEDHAN LUTTED

#	Article	IF	CITATIONS
1	EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multiâ€Regional Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 502-515.	2.8	514
2	Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability, 2015, 7, 138-163.	1.6	321
3	EXIOPOL – DEVELOPMENT AND ILLUSTRATIVE ANALYSES OF A DETAILED GLOBAL MR EE SUT/IOT. Economic Systems Research, 2013, 25, 50-70.	1.2	304
4	Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis. Ecological Economics, 2011, 70, 1937-1945.	2.9	299
5	Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments. Global Environmental Change, 2016, 40, 171-181.	3.6	172
6	Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3. Journal of Industrial Ecology, 2018, 22, 553-564.	2.8	147
7	Global Patterns of Material Flows and their Socio-Economic and Environmental Implications: A MFA Study on All Countries World-Wide from 1980 to 2009. Resources, 2014, 3, 319-339.	1.6	127
8	A comprehensive set of resource use indicators from the micro to the macro level. Resources, Conservation and Recycling, 2011, 55, 300-308.	5.3	102
9	Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecological Economics, 2015, 116, 289-299.	2.9	98
10	Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. Global Environmental Change, 2016, 38, 171-182.	3.6	98
11	Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nature Sustainability, 2022, 5, 157-166.	11.5	69
12	Towards Robust, Authoritative Assessments of Environmental Impacts Embodied in Trade: Current State and Recommendations. Journal of Industrial Ecology, 2018, 22, 585-598.	2.8	68
13	A review and comparative assessment of existing approaches to calculate material footprints. Ecological Economics, 2016, 127, 1-10.	2.9	63
14	Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. Journal of Economic Structures, 2016, 5, .	0.6	54
15	The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO. Journal of Industrial Ecology, 2019, 23, 946-958.	2.8	42
16	Anthropogenic Nitrogen and Phosphorus Emissions and Related Grey Water Footprints Caused by EU-27′s Crop Production and Consumption. Water (Switzerland), 2016, 8, 30.	1.2	31
17	Metal Mining's Environmental Pressures: A Review and Updated Estimates on CO2 Emissions, Water Use, and Land Requirements. Sustainability, 2018, 10, 2881.	1.6	30
18	Towards a Conceptual Framework for Social-Ecological Systems Integrating Biodiversity and Ecosystem Services with Resource Efficiency Indicators. Sustainability, 2016, 8, 201.	1.6	23

STEPHAN LUTTER

#	Article	IF	CITATIONS
19	Ecosystem services costs of metal mining and pressures on biomes. The Extractive Industries and Society, 2020, 7, 79-86.	0.7	16
20	Carbon prices for meeting the Paris agreement and their impact on key metals. The Extractive Industries and Society, 2020, 7, 593-599.	0.7	13
21	Indicating the wrong track? A critical appraisal of water productivity as an indicator to inform water efficiency policies. Resources, Conservation and Recycling, 2021, 168, 105452.	5.3	11
22	Proposal for a new compilation system for metal ores in economy wide material flow accounting. Journal of Industrial Ecology, 2020, 24, 1220-1233.	2.8	3
23	Estimating water input in the mining industry in Brazil: A methodological proposal in a data-scarce context. The Extractive Industries and Society, 2021, , 101015.	0.7	2
24	Data, Indicators and Targets for Comprehensive Resource Policies. Eco-efficiency in Industry and Science, 2018, , 45-69.	0.1	0
25	Measuring Natural Resource Use from the Micro to the Macro Level. Studies in Ecological Economics, 2017, , 161-182.	0.2	Ο