Stephanie Duguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular adaptations of neuromuscular diseaseâ€associated proteins in response to eccentric exercise in human skeletal muscle. Journal of Physiology, 2002, 543, 297-306.	2.9	180
2	Mitochondrial biogenesis during skeletal muscle regeneration. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E802-E809.	3.5	148
3	Bodywide skipping of exons 45–55 in dystrophic <i>mdx52</i> mice by systemic antisense delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13763-13768.	7.1	139
4	Calpain 3: a key regulator of the sarcomere?. FEBS Journal, 2006, 273, 3427-3436.	4.7	115
5	Advances in the proteomic investigation of the cell secretome. Expert Review of Proteomics, 2012, 9, 337-345.	3.0	109
6	Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skeletal Muscle, 2015, 5, 16.	4.2	105
7	Age-Associated Methylation Suppresses SPRY1 , Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Reports, 2015, 13, 1172-1182.	6.4	95
8	Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology, 2013, 14, 273-292.	3.9	92
9	Molecular and Cellular Mechanisms Affected in ALS. Journal of Personalized Medicine, 2020, 10, 101.	2.5	79
10	Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics. Human Molecular Genetics, 2014, 23, 4745-4757.	2.9	66
11	Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E206-E215.	3.5	58
12	Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines. Skeletal Muscle, 2016, 6, 43.	4.2	57
13	Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cellular and Molecular Life Sciences, 2013, 70, 2159-2174.	5.4	55
14	A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Frontiers in Neurology, 2019, 10, 400.	2.4	54
15	Correction of the Exon 2 Duplication in DMD Myoblasts by a Single CRISPR/Cas9 System. Molecular Therapy - Nucleic Acids, 2017, 7, 11-19.	5.1	44
16	Expression and modification proteomics during skeletal muscle ageing. Biogerontology, 2013, 14, 339-352.	3.9	43
17	A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factorâ€̂PB pathway in skeletal muscle. FEBS Journal, 2010, 277, 4322-4337.	4.7	37
18	A Systematic Review of Genotype–Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS, Journal of Personalized Medicine, 2020, 10, 58	2.5	36

STEPHANIE DUGUEZ

#	Article	IF	CITATIONS
19	Mitochondrial-dependent regulation of myoblast proliferation. Experimental Cell Research, 2004, 299, 27-35.	2.6	34
20	Regulation of ubiquitin–proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading. Pflugers Archiv European Journal of Physiology, 2007, 454, 625-633.	2.8	33
21	Correlation between low <scp>FAT</scp> 1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Annals of Neurology, 2015, 78, 387-400.	5.3	32
22	Optimized method for extraction of exosomes from human primary muscle cells. Skeletal Muscle, 2020, 10, 20.	4.2	31
23	Δ-9,11 Modification of Glucocorticoids Dissociates Nuclear Factor-ήB Inhibitory Efficacy from Glucocorticoid Response Element-Associated Side Effects. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 225-232.	2.5	27
24	The Rag2–ll2rb–Dmd– Mouse: a Novel Dystrophic and Immunodeficient Model to Assess Innovating Therapeutic Strategies for Muscular Dystrophies. Molecular Therapy, 2013, 21, 1950-1957.	8.2	23
25	CellWhere: graphical display of interaction networks organized on subcellular localizations. Nucleic Acids Research, 2015, 43, W571-W575.	14.5	23
26	<scp><i>GGPS1</i></scp> Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome. Annals of Neurology, 2020, 88, 332-347.	5.3	22
27	Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells, 2021, 10, 2930.	4.1	21
28	Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. Science Advances, 2021, 7, .	10.3	20
29	Changes in Communication between Muscle Stem Cells and their Environment with Aging. Journal of Neuromuscular Diseases, 2015, 2, 205-217.	2.6	19
30	Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1385-1402.	7.3	16
31	The isolated muscle fibre as a model of disuse atrophy: Characterization using PhAct, a method to quantify f-actin. Experimental Cell Research, 2011, 317, 1979-1993.	2.6	15
32	Atmospheric Oxygen Tension Slows Myoblast Proliferation via Mitochondrial Activation. PLoS ONE, 2012, 7, e43853.	2.5	14
33	What Can Machine Learning Approaches in Genomics Tell Us about the Molecular Basis of Amyotrophic Lateral Sclerosis?. Journal of Personalized Medicine, 2020, 10, 247.	2.5	14
34	Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis (ALS): Current Knowledge. Journal of Personalized Medicine, 2018, 8, 44.	2.5	13
35	Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field. Skeletal Muscle, 2019, 9, 10.	4.2	8
36	Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. Journal of Infectious Diseases, 2019, 220, 710-719.	4.0	8

STEPHANIE DUGUEZ

#	Article	IF	CITATIONS
37	MyoMiner: explore gene co-expression in normal and pathological muscle. BMC Medical Genomics, 2020, 13, 67.	1.5	7
38	Epidemiology and Survival Trends of Motor Neurone Disease in Northern Ireland from 2015â€2019. European Journal of Neurology, 2021, , .	3.3	6
39	The Neurotoxicity of Vesicles Secreted by ALS Patient Myotubes Is Specific to Exosome-Like and Not Larger Subtypes. Cells, 2022, 11, 845.	4.1	6
40	Skeletal Muscle Sings a Choral Stem Cell Lullaby. Cell Stem Cell, 2009, 5, 231-232.	11.1	3
41	Secretion of toxic exosomes by muscle cells of ALS patients: role in ALS pathogenesis. Neuromuscular Disorders, 2017, 27, S32.	0.6	1
42	Correlation between low FAT1 expression and early affected muscle in FSHD. Neuromuscular Disorders, 2015, 25, S312.	0.6	0
43	SysMyo: tailored bioinformatics tools for omics data exploration in muscular dystrophy and other neuromuscular disorders. Neuromuscular Disorders, 2017, 27, S8.	0.6	0
44	Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system. Neuromuscular Disorders, 2017, 27, S187.	0.6	0
45	NEW INSIGHTS INTO CELLULAR FUNCTIONS. Neuromuscular Disorders, 2018, 28, S89.	0.6	0
46	Understanding Neuromuscular Health and Disease: Advances in Genetics, Omics, and Molecular Function. Journal of Personalized Medicine, 2021, 11, 438.	2.5	0
47	Optimized Molecular Interaction Networks for the Study of Skeletal Muscle. Journal of Neuromuscular Diseases, 2021, 8, 1-17.	2.6	0
48	Isolated Murine Myofibres Undergo Atrophy Ex Vivo Via Diminution of the Myonuclear Domain. FASEB Journal, 2011, 25, 1051.20.	0.5	0