
Sean J Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7227307/publications.pdf Version: 2024-02-01

SEAN | FLUOTT

#	Article	IF	CITATIONS
1	OvoA _{Mtht} from <i>Methyloversatilis thermotolerans</i> ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chemical Science, 2022, 13, 3589-3598.	3.7	14
2	Bioenergetics Theory and Components Iron–Sulfur Proteins. , 2021, , 53-65.		0
3	Maximizing (Electro)catalytic CO ₂ Reduction with a Ferredoxin-Based Reduction Potential Gradient. ACS Catalysis, 2021, 11, 4009-4023.	5.5	10
4	Elucidating Electron Storage and Distribution within the Pentaheme Scaffold of Cytochrome <i>c</i> Nitrite Reductase (NrfA). Biochemistry, 2021, 60, 1853-1867.	1.2	6
5	Mechanism of Reduction of an Aminyl Radical Intermediate in the Radical SAM GTP 3′,8-Cyclase MoaA. Journal of the American Chemical Society, 2021, 143, 13835-13844.	6.6	7
6	Light-driven carbonâ~'carbon bond formation via CO ₂ reduction catalyzed by complexes of CdS nanorods and a 2-oxoacid oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 135-140.	3.3	24
7	A Stable Ferryl Porphyrin at the Active Site of Y463M BthA. Journal of the American Chemical Society, 2020, 142, 11978-11982.	6.6	1
8	Structural Properties and Catalytic Implications of the SPASM Domain Iron–Sulfur Clusters in <i>Methylorubrum extorquens</i> PqqE. Journal of the American Chemical Society, 2020, 142, 12620-12634.	6.6	17
9	Electronic State of the His/Tyr-Ligated Heme of BthA by Mössbauer and DFT Analysis. Inorganic Chemistry, 2020, 59, 10223-10233.	1.9	10
10	Spectroscopic and Electrochemical Characterization of the Mycofactocin Biosynthetic Protein, MftC, Provides Insight into Its Redox Flipping Mechanism. Biochemistry, 2019, 58, 940-950.	1.2	25
11	Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator. Journal of Biological Inorganic Chemistry, 2019, 24, 889-898.	1.1	12
12	A widely distributed diheme enzyme from Burkholderia that displays an atypically stable bis-Fe(IV) state. Nature Communications, 2019, 10, 1101.	5.8	20
13	Metalloprotein switches that display chemical-dependent electron transfer in cells. Nature Chemical Biology, 2019, 15, 189-195.	3.9	46
14	Ferredoxins as interchangeable redox components in support of MiaB, a radical Sâ€adenosylmethionine methylthiotransferase. Protein Science, 2019, 28, 267-282.	3.1	20
15	Parsing redox potentials of five ferredoxins found within <i>Thermotoga maritima</i> . Protein Science, 2019, 28, 257-266.	3.1	14
16	A Reverse TCA Cycle 2-Oxoacid:Ferredoxin Oxidoreductase that Makes C-C Bonds from CO2. Joule, 2019, 3, 595-611.	11.7	29
17	Deconvoluting the Reduction Potentials for the Three [4Fe-4S] Clusters in an AdoMet Radical SCIFF Maturase. Biochemistry, 2018, 57, 6050-6053.	1.2	13
18	Resonance Raman, Electron Paramagnetic Resonance, and Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome <i>c</i> Peroxidases from <i>Nitrosomonas europaea</i> and <i>Shewanella oneidensis</i> . Biochemistry, 2018, 57, 6416-6433.	1.2	15

#	Article	IF	CITATIONS
19	Determining Redox Potentials of the Iron–Sulfur Clusters of the AdoMet Radical Enzyme Superfamily. Methods in Enzymology, 2018, 606, 319-339.	0.4	10
20	Influence of heme c attachment on heme conformation and potential. Journal of Biological Inorganic Chemistry, 2018, 23, 1073-1083.	1.1	10
21	The hydrogen dependent CO ₂ reductase: the first completely CO tolerant FeFe-hydrogenase. Energy and Environmental Science, 2017, 10, 503-508.	15.6	30
22	Molecular basis of cobalamin-dependent RNA modification. Nucleic Acids Research, 2016, 44, gkw806.	6.5	29
23	Transformations of the FeS Clusters of the Methylthiotransferases MiaB and RimO, Detected by Direct Electrochemistry. Biochemistry, 2016, 55, 5531-5536.	1.2	16
24	Spectroscopic and Electrochemical Characterization of the Iron–Sulfur and Cobalamin Cofactors of TsrM, an Unusual Radical <i>S</i> -Adenosylmethionine Methylase. Journal of the American Chemical Society, 2016, 138, 3416-3426.	6.6	77
25	The Catalytic Bias of 2-Oxoacid:ferredoxin Oxidoreductase in CO2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay. Electrochimica Acta, 2016, 199, 349-356.	2.6	28
26	Functionally Distinct Bacterial Cytochrome <i>c</i> Peroxidases Proceed through a Common (Electro)catalytic Intermediate. Biochemistry, 2016, 55, 125-132.	1.2	7
27	A Ferredoxin Disulfide Reductase Delivers Electrons to the <i>Methanosarcina barkeri</i> Class III Ribonucleotide Reductase. Biochemistry, 2015, 54, 7019-7028.	1.2	18
28	Methionine Ligand Lability of Homologous Monoheme Cytochromes <i>c</i> . Inorganic Chemistry, 2015, 54, 38-46.	1.9	10
29	Correlations between the Electronic Properties of <i>Shewanella oneidensis</i> Cytochrome <i>c</i> Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation. Biochemistry, 2015, 54, 3749-3758.	1.2	9
30	Electrochemical Resolution of the [4Fe-4S] Centers of the AdoMet Radical Enzyme BtrN: Evidence of Proton Coupling and an Unusual, Low-Potential Auxiliary Cluster. Journal of the American Chemical Society, 2015, 137, 8664-8667.	6.6	43
31	Rheostat Re-Wired: Alternative Hypotheses for the Control of Thioredoxin Reduction Potentials. PLoS ONE, 2015, 10, e0122466.	1.1	13
32	Bacterial Cytochrome c Peroxidases: Insight into the Structureâ€Function Relationship. FASEB Journal, 2015, 29, 722.12.	0.2	0
33	Potential New Chemical Roles for Diheme Enzymes in Burkholderia. FASEB Journal, 2015, 29, 573.24.	0.2	0
34	Alternative FeS cluster ligands: tuning redox potentials and chemistry. Current Opinion in Chemical Biology, 2014, 19, 50-58.	2.8	111
35	Hydrogen Bonding Networks Tune Proton-Coupled Redox Steps during the Enzymatic Six-Electron Conversion of Nitrite to Ammonia. Biochemistry, 2014, 53, 5638-5646.	1.2	23
36	Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus <i>Neurospora crassa</i> Ergothioneine Biosynthetic Pathway. Organic Letters, 2014, 16, 5382-5385.	2.4	74

#	Article	IF	CITATIONS
37	Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10161-10166.	3.3	55
38	Protein–Protein Interaction Regulates the Direction of Catalysis and Electron Transfer in a Redox Enzyme Complex. Journal of the American Chemical Society, 2013, 135, 10550-10556.	6.6	68
39	Conserved Hydrogen Bonding Networks of MitoNEET Tune Fe-S Cluster Binding and Structural Stability. Biochemistry, 2013, 52, 4687-4696.	1.2	42
40	Multi-heme proteins: Nature's electronic multi-purpose tool. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 938-948.	0.5	82
41	Direct Electrochemistry of Shewanella oneidensis Cytochrome c Nitrite Reductase. FASEB Journal, 2013, 27, lb59.	0.2	0
42	Electrochemical investigation of a radical s adenosylmethionine enzyme: BtrN from Bacillus circulans. FASEB Journal, 2013, 27, .	0.2	0
43	Protonâ€Dependence of the MitoNEET [2Feâ€2S] Cluster : An Electrochemical and Structural Investigation. FASEB Journal, 2013, 27, lb175.	0.2	0
44	Electrochemical Characterization of Escherichia coli Adaptive Response Protein AidB. International Journal of Molecular Sciences, 2012, 13, 16899-16915.	1.8	6
45	Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family. Biochemical Society Transactions, 2012, 40, 1268-1273.	1.6	15
46	Direct Electrochemistry of <i>Shewanella oneidensis</i> Cytochrome <i>c</i> Nitrite Reductase: Evidence of Interactions across the Dimeric Interface. Biochemistry, 2012, 51, 10175-10185.	1.2	19
47	An Unusual Role for a Mobile Flavin in StaC-like Indolocarbazole Biosynthetic Enzymes. Chemistry and Biology, 2012, 19, 855-865.	6.2	29
48	The Diheme Cytochrome <i>c</i> Peroxidase from <i>Shewanella oneidensis</i> Requires Reductive Activation. Biochemistry, 2012, 51, 974-985.	1.2	38
49	MacA is a Second Cytochrome <i>c</i> Peroxidase of <i>Geobacter sulfurreducens</i> . Biochemistry, 2012, 51, 2747-2756.	1.2	44
50	Impact of Quaternary Structure upon Bacterial Cytochrome <i>c</i> Peroxidases: Does Homodimerization Matter?. Biochemistry, 2012, 51, 10008-10016.	1.2	8
51	Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. Journal of Biological Inorganic Chemistry, 2012, 17, 647-662.	1.1	50
52	Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics, 2011, 3, 344.	1.0	52
53	Flavin-Induced Oligomerization in <i>Escherichia coli</i> Adaptive Response Protein AidB. Biochemistry, 2011, 50, 10159-10169.	1.2	9
54	Methionine Ligand Lability in Bacterial Monoheme Cytochromes <i>c</i> : An Electrochemical Study. Journal of Physical Chemistry B, 2011, 115, 11718-11726.	1.2	17

#	Article	IF	CITATIONS
55	<i>Geobacter sulfurreducens</i> Cytochrome <i>c</i> Peroxidases: Electrochemical Classification of Catalytic Mechanisms. Biochemistry, 2011, 50, 4513-4520.	1.2	9
56	Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation. Journal of Physical Chemistry B, 2011, 115, 11208-11214.	1.2	32
57	Silver Nanoparticle-Catalyzed Dielsâ^'Alder Cycloadditions of 2′-Hydroxychalcones. Journal of the American Chemical Society, 2010, 132, 7514-7518.	6.6	131
58	Electrochemical Evidence for Multiple Peroxidatic Heme States of the Diheme Cytochrome <i>c</i> Peroxidase of <i>Pseudomonas aeruginosa</i> . Biochemistry, 2009, 48, 87-95.	1.2	20
59	Oxidative Disassembly of the [2Fe-2S] Cluster of Human Grx2 and Redox Regulation in the Mitochondria. Biochemistry, 2009, 48, 3813-3815.	1.2	25
60	Redox Characterization of the FeS Protein MitoNEET and Impact of Thiazolidinedione Drug Binding. Biochemistry, 2009, 48, 10193-10195.	1.2	68
61	Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. Journal of Biological Inorganic Chemistry, 2008, 13, 849-854.	1.1	168
62	Thioredoxin Reductase from <i>Thermoplasma acidophilum</i> : A New Twist on Redox Regulation [,] . Biochemistry, 2008, 47, 9728-9737.	1.2	21
63	Direct Electrochemical Analyses of a Thermophilic Thioredoxin Reductase: Interplay between Conformational Change and Redox Chemistry. Biochemistry, 2008, 47, 9738-9746.	1.2	10
64	Methionine Ligand Lability of Type I Cytochromesc: Detection of Ligand Loss Using Protein Film Voltammetry. Journal of the American Chemical Society, 2008, 130, 6682-6683.	6.6	25
65	Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15311-15316.	3.3	72
66	Heme Attachment Motif Mobility Tunes Cytochrome c Redox Potential. Biochemistry, 2007, 46, 11753-11760.	1.2	41
67	Direct Electrochemistry of Tetraheme Cytochromec554fromNitrosomonas europaea:Â Redox Cooperativity and Gating. Journal of the American Chemical Society, 2007, 129, 1838-1839.	6.6	32
68	Direct Electrochemical Characterization of Archaeal Thioredoxins. Angewandte Chemie - International Edition, 2007, 46, 4145-4147.	7.2	21
69	Protonation and inhibition of Nitrosomonas europaea cytochrome c peroxidase observed with protein film voltammetry. Journal of Inorganic Biochemistry, 2007, 101, 173-179.	1.5	12
70	The "Bridging―Aspartate 178 in Phthalate Dioxygenase Facilitates Interactions between the Rieske Center and the Iron(II)â~'Mononuclear Centerâ€. Biochemistry, 2006, 45, 10208-10216.	1.2	22
71	Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotechnology, 2005, 23, 377-383.	9.4	330
72	Redox Properties of Wild-Type and Heme-Binding Loop Mutants of Bacterial Cytochromes c Measured by Direct Electrochemistry. Inorganic Chemistry, 2005, 44, 8999-9006.	1.9	27

#	Article	IF	CITATIONS
73	A Distinctive Electrocatalytic Response from the Cytochrome c Peroxidase of Nitrosomonas europaea. Journal of Biological Chemistry, 2004, 279, 13297-13300.	1.6	35
74	Voltammetric Studies of the Catalytic Mechanism of the Respiratory Nitrate Reductase fromEscherichia coli:Â How Nitrate Reduction and Inhibition Depend on the Oxidation State of the Active Siteâ€. Biochemistry, 2004, 43, 799-807.	1.2	88
75	The Copper Clusters in the Particulate Methane Monooxygenase (pMMO) from <i>Methylococcus Capsulatus</i> (Bath). Journal of the Chinese Chemical Society, 2004, 51, 1081-1098.	0.8	50
76	Enzyme Electrokinetics:Â Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanismsâ€. Biochemistry, 2003, 42, 8653-8662.	1.2	266
77	A Voltammetric Study of Interdomain Electron Transfer within Sulfite Oxidase. Journal of the American Chemical Society, 2002, 124, 11612-11613.	6.6	90
78	Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 54-59.	0.5	41
79	Pulsed EPR Studies of Particulate Methane Monooxygenase fromMethylococcus Capsulatus(Bath):Â Evidence for Histidine Ligation. Journal of the American Chemical Society, 1998, 120, 3247-3248.	6.6	42
80	The Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath) Is a Novel Copper-containing Three-subunit Enzyme. Journal of Biological Chemistry, 1998, 273, 7957-7966.	1.6	199
81	Regio- and Stereoselectivity of Particulate Methane Monooxygenase fromMethylococcus capsulatus(Bath). Journal of the American Chemical Society, 1997, 119, 9949-9955.	6.6	153
82	X-ray Absorption and EPR Studies on the Copper Ions Associated with the Particulate Methane Monooxygenase fromMethylococcus capsulatus(Bath). Cu(I) Ions and Their Implications. Journal of the American Chemical Society, 1996, 118, 12766-12776.	6.6	120
83	The Biochemistry Of the Particulate Methane Monooxygenase. , 1996, , 150-158.		13