Victor Manuel Martinez Quiroga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7227244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methodology for phenomenological code assessment with integral test data. Nuclear Engineering and Design, 2022, 387, 111608.	1.7	3
2	OECD/NEA PKL-4 benchmark activity. Code assessment of the relevant phenomena associated to a blind IBLOCA experiment. Nuclear Engineering and Design, 2022, 389, 111632.	1.7	4
3	Multi-physics framework for whole-core analysis of transient fuel performance after load following in a pressurised water reactor. Annals of Nuclear Energy, 2022, 173, 109086.	1.8	1
4	On the validation of BEPU methodologies through the simulation of integral experiments: Application to the PKL test facility. Nuclear Engineering and Design, 2021, 379, 111238.	1.7	4
5	Effectiveness of the ASVAD valve in a reactor vessel bottom leak scenario. Annals of Nuclear Energy, 2021, 160, 108387.	1.8	3
6	On the scaling of uncertainties in thermal hydraulic system codes. Annals of Nuclear Energy, 2020, 136, 107026.	1.8	3
7	Modelling guidelines for safety analysis of Station Black Out sequences based on experiments at the PKL test facility. Annals of Nuclear Energy, 2020, 138, 107179.	1.8	7
8	Perfecting the use of hybrid models in scaling analysis. Nuclear Engineering and Design, 2019, 354, 110187.	1.7	4
9	Thermal-hydraulics and neutronic code coupling for RELAP/SCDAPSIM/MOD4.0. Nuclear Engineering and Design, 2019, 344, 174-182.	1.7	3
10	PVST, a tool to assess the Power to Volume scaling distortions associated to code simulations. Nuclear Engineering and Design, 2018, 332, 173-185.	1.7	7
11	A New Method of Integrating the RELAP5 to the RINSIM Simulation Platform. , 2018, , .		0
12	Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology. Nuclear Engineering and Design, 2016, 308, 115-132.	1.7	12
13	Coupling of RELAP5-SCDAP MOD4.0 and Neutronic Codes. , 2015, , .		2
14	Modelling guidelines for core exit temperature simulations with system codes. Nuclear Engineering and Design, 2015, 286, 116-129.	1.7	22
15	The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations for Particular Scenarios. Science and Technology of Nuclear Installations, 2014, 2014, 1-13.	0.8	6
16	Applying UPC Scaling-Up Methodology to the LSTF-PKL Counterpart Test. Science and Technology of Nuclear Installations, 2014, 2014, 1-18.	0.8	10
17	Modelling of a supercritical CO2 power cycle for nuclear fusion reactors using RELAP5–3D. Fusion Engineering and Design, 2014, 89, 354-359.	1.9	16