MarÃ-a Ãngeles Gil Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Location-Free Robust Scale Estimates for Fuzzy Data. IEEE Transactions on Fuzzy Systems, 2021, 29, 1682-1694.	6.5	5
2	Fuzzy rating scales: Does internal consistency of a measurement scale benefit from coping with imprecision and individual differences in psychological rating?. Information Sciences, 2021, 550, 91-108.	4.0	5
3	Descriptive Comparison of the Rating Scales Through Different Scale Estimates: Simulation-Based Analysis. Advances in Intelligent Systems and Computing, 2019, , 9-16.	0.5	1
4	Case Study-Based Sensitivity Analysis of Scale Estimates w.r.t. the Shape of Fuzzy Data. Advances in Intelligent Systems and Computing, 2019, , 157-165.	0.5	0
5	Fuzzy Random Variables à la Kruse & Meyer and à la Puri & Ralescu: Key Differences and Coincidences. Studies in Computational Intelligence, 2018, , 21-29.	0.7	3
6	Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data. International Journal of Approximate Reasoning, 2017, 88, 128-147.	1.9	16
7	Fuzzy data analysis and classification. Advances in Data Analysis and Classification, 2017, 11, 645-657.	0.9	15
8	A hypothesis testing-based discussion on the sensitivity of means of fuzzy data with respect to data shape. Fuzzy Sets and Systems, 2017, 328, 54-69.	1.6	15
9	Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale?. Information Sciences, 2016, 360, 131-148.	4.0	34
10	The mean square error of a random fuzzy vector based on the support function and the Steiner point. Fuzzy Sets and Systems, 2016, 292, 347-363.	1.6	3
11	M-Estimates of Location for the Robust Central Tendency of Fuzzy Data. IEEE Transactions on Fuzzy Systems, 2016, 24, 945-956.	6.5	17
12	Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications. European Journal of Operational Research, 2016, 251, 918-929.	3.5	35
13	Fuzzy Rating Scale-Based Questionnaires and Their Statistical Analysis. IEEE Transactions on Fuzzy Systems, 2015, 23, 111-126.	6.5	77
14	An Overview on the Statistical Central Tendency for Fuzzy Data Sets. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2015, 23, 105-132.	0.9	4
15	The fuzzy characterizing function of the distribution of a random fuzzy number. Applied Mathematical Modelling, 2015, 39, 4044-4056.	2.2	6
16	Analyzing data from a fuzzy rating scale-based questionnaire. A case study. Psicothema, 2015, 27, 182-91.	0.7	23
17	Empirical Sensitivity Analysis on the Influence of the Shape of Fuzzy Data on the Estimation of Some Statistical Measures. Advances in Intelligent Systems and Computing, 2015, , 123-131.	0.5	3
18	On the Robustness of Absolute Deviations with Fuzzy Data. Advances in Intelligent Systems and Computing, 2015. , 133-141.	0.5	0

MARÃA ÃNGELES GIL ÃLVAREZ

#	Article	IF	CITATIONS
19	Rejoinder on "A distance-based statistical analysis of fuzzy number-valued data― International Journal of Approximate Reasoning, 2014, 55, 1601-1605.	1.9	21
20	A parameterized metric between fuzzy numbers and its parameter interpretation. Fuzzy Sets and Systems, 2014, 245, 101-115.	1.6	13
21	Central tendency for symmetric random fuzzy numbers. Information Sciences, 2014, 278, 599-613.	4.0	5
22	A distance-based statistical analysis of fuzzy number-valued data. International Journal of Approximate Reasoning, 2014, 55, 1487-1501.	1.9	63
23	Comments on "Statistical reasoning with set-valued information: Ontic vs. epistemic viewsâ€. International Journal of Approximate Reasoning, 2014, 55, 1580-1582.	1.9	2
24	Bertoluzza et al.'s metric as a basis for analyzing fuzzy data. Metron, 2013, 71, 307-322.	0.6	3
25	Fuzzy Statistical Analysis: methods and applications. Metron, 2013, 71, 197-199.	0.6	1
26	Editorial of the special issue "Statistics with Imperfect Dataâ€. Information Sciences, 2013, 245, 1-3.	4.0	3
27	A generalized L1-type metric between fuzzy numbers for an approach to central tendency of fuzzy data. Information Sciences, 2013, 242, 22-34.	4.0	23
28	Arithmetic and Distance-Based Approach to the Statistical Analysis of Imprecisely Valued Data. Studies in Fuzziness and Soft Computing, 2013, , 1-18.	0.6	6
29	Fuzzy Rating vs. Fuzzy Conversion Scales: An Empirical Comparison through the MSE. Advances in Intelligent Systems and Computing, 2013, , 135-143.	0.5	8
30	A new way of quantifying the symmetry of a random variable: Estimation and hypothesis testing. Journal of Statistical Planning and Inference, 2012, 142, 3061-3072.	0.4	4
31	Fuzzy vs. Likert Scale in Statistics. Studies in Fuzziness and Soft Computing, 2012, , 407-420.	0.6	25
32	The median of a random fuzzy number. The 1-norm distance approach. Fuzzy Sets and Systems, 2012, 200, 99-115.	1.6	62
33	Fuzzy data treated as functional data: A one-way ANOVA test approach. Computational Statistics and Data Analysis, 2012, 56, 943-955.	0.7	143
34	Interval arithmetic-based simple linear regression between interval data: Discussion and sensitivity analysis on the choice of the metric. Information Sciences, 2012, 199, 109-124.	4.0	31
35	Statistics with Imprecise Data. , 2012, , 3052-3063.		1
36	Nonparametric criteria for supervised classification of fuzzy data. International Journal of Approximate Reasoning, 2011, 52, 1272-1282.	1.9	22

MARÃA ÃNGELES GIL ÃLVAREZ

#	Article	IF	CITATIONS
37	Interval and Fuzzy-Valued Approaches to the Statistical Management of Imprecise Data. Understanding Complex Systems, 2011, , 453-468.	0.3	4
38	One-sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika, 2010, 71, 185-202.	0.5	31
39	The Median of a Random Interval. Advances in Intelligent and Soft Computing, 2010, , 575-583.	0.2	11
40	A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread. Information Sciences, 2009, 179, 3964-3972.	4.0	118
41	Testing †Two-Sided' Hypothesis about the Mean of an Interval-Valued Random Set. Advances in Soft Computing, 2008, , 133-139.	0.4	5
42	An asymmetry coefficient for random variables based on fuzzification. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	0
43	Power analysis of the one sample test for fuzzy random variables. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	Ο
44	Testing linear independence in linear models with interval-valued data. Computational Statistics and Data Analysis, 2007, 51, 3002-3015.	0.7	54
45	A fuzzy representation of random variables: An operational tool in exploratory analysis and hypothesis testing. Computational Statistics and Data Analysis, 2006, 51, 163-176.	0.7	40
46	Bootstrap approach to the multi-sample test of means with imprecise data. Computational Statistics and Data Analysis, 2006, 51, 148-162.	0.7	91
47	The fuzzy approach to statistical analysis. Computational Statistics and Data Analysis, 2006, 51, 1-14.	0.7	91
48	Overview on the development of fuzzy random variables. Fuzzy Sets and Systems, 2006, 157, 2546-2557.	1.6	196
49	Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems, 2006, 157, 2608-2613.	1.6	84
50	Solving influence diagrams with fuzzy chance and value nodes. European Journal of Operational Research, 2005, 167, 444-460.	3.5	23
51	Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika, 2004, 59, 31-49.	0.5	103
52	Convergence criteria for interval-valued inequality indices. Statistics, 2004, 38, 59-66.	0.3	0
53	Introduction to ANOVA with Fuzzy Random Variables. , 2004, , 487-494.		18
54	Bootstrap Approach to Test the Linear Independence between Interval-valued Random Sets. , 2004, , 431-438.		1

#	Article	IF	CITATIONS
55	Differentiating random upper semicontinuous functions under the integral sign. Test, 2003, 12, 241-258.	0.7	4
56	The s-differentiability of a fuzzy-valued mapping. Information Sciences, 2003, 151, 283-299.	4.0	9
57	Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data. IEEE Transactions on Fuzzy Systems, 2002, 10, 384-390.	6.5	50
58	Least squares fitting of an affine function and strength of association for interval-valued data. Metrika, 2002, 56, 97-111.	0.5	76
59	Quantifying the Correlation between Two Internal-Valued Random Sets. Studies in Fuzziness and Soft Computing, 2002, , 99-108.	0.6	1
60	Reversing the Order of Integration in Iterated Expectations of Compact Convex Random Sets. Advances in Intelligent and Soft Computing, 2002, , 140-145.	0.2	0
61	f-inequality indices for fuzzy random variables. Studies in Fuzziness and Soft Computing, 2002, , 43-63.	0.6	1
62	Regression and correlation analyses of a linear relation between random intervals. Test, 2001, 10, 183-201.	0.7	30
63	Fuzzy random variables. Information Sciences, 2001, 133, 1-2.	4.0	17
64	Two-sample hypothesis tests of means of a fuzzy random variable. Information Sciences, 2001, 133, 89-100.	4.0	88
65	Interval-valued quantification of the inequality associated with a random set. Statistics and Probability Letters, 2000, 46, 149-159.	0.4	6
66	The -mean squared dispersion associated with a fuzzy random variable. Fuzzy Sets and Systems, 2000, 111, 307-317.	1.6	51
67	An extension of Fubini's theorem for fuzzy random variables. Information Sciences, 1999, 115, 29-41.	4.0	8
68	Estimating the expected value of fuzzy random variables in random samplings from finite populations. Statistical Papers, 1999, 40, 277-295.	0.7	27
69	A generalized strong law of large numbers. Probability Theory and Related Fields, 1999, 114, 401-417.	0.9	97
70	Fuzzy Random Variables: Modeling Linguistic Statistical Data. Studies in Fuzziness and Soft Computing, 1999, , 137-157.	0.6	0
71	Approximating integrably bounded fuzzy random variables in terms of the "generalized―Hausdorff metric. Information Sciences, 1998, 104, 279-291.	4.0	17
72	The fuzzy hyperbolic inequality index associated with fuzzy random variables. European Journal of Operational Research, 1998, 110, 377-391.	3.5	10

#	Article	IF	CITATIONS
73	Reversing the order of integration in iterated expectations of fuzzy random variables, and statistical applications. Journal of Statistical Planning and Inference, 1998, 74, 11-29.	0.4	30
74	The λ-average value and the fuzzy expectation of a fuzzy random variable. Fuzzy Sets and Systems, 1998, 99, 347-352.	1.6	44
75	An improvement of a comparison of experiments in statistical decision problems with fuzzy utilities. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 1998, 28, 856-864.	3.4	8
76	Fuzzy Set-Theoretic Methods in Statistics. The Handbooks of Fuzzy Sets Series, 1998, , 311-347.	0.5	22
77	Approximation aspects of fuzzy models. , 1998, , .		Ο
78	Constructive definitions of fuzzy random variables. Statistics and Probability Letters, 1997, 36, 135-143.	0.4	57
79	Fundamentals and Bayesian analyses of decision problems with fuzzy-valued utilities. International Journal of Approximate Reasoning, 1996, 15, 203-224.	1.9	41
80	Statistical management of fuzzy elements in random experiments. Part 1: A discussion on treating fuzziness as a kind of randomness. Information Sciences, 1993, 69, 229-242.	4.0	4
81	Statistical management of fuzzy elements in random experiments. Part 2: The fisher information associated with a fuzzy information system. Information Sciences, 1993, 69, 243-257.	4.0	2
82	Analyzing the Meaning of Fuzziness in Random Experiments. , 1993, , 429-439.		0
83	A note on the connection between fuzzy numbers and random intervals. Statistics and Probability Letters, 1992, 13, 311-319.	0.4	17
84	Fuzziness in the experimental outcomes: comparing experiments and removing the loss of information. Journal of Statistical Planning and Inference, 1992, 31, 93-111.	0.4	6
85	Analysis of mutual information measures in cluster sampling. Applied Mathematics and Computation, 1992, 52, 389-402.	1.4	1
86	Comparison of experiments in statistical decision problems with fuzzy utilities. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22, 662-670.	0.9	26
87	A procedure to test the suitability of a factor for stratification in estimating diversity. Applied Mathematics and Computation, 1991, 43, 221-229.	1.4	4
88	Connections between some criteria to compare fuzzy information systems. Fuzzy Sets and Systems, 1990, 37, 183-192.	1.6	5
89	A note on stratification and gain in precision in estimating diversity from large samples. Communications in Statistics - Theory and Methods, 1989, 18, 1521-1526.	0.6	13
90	Estudio asintotico de una clase de indices de desigualdad muestrales. Trabajos De EstadÃstica, 1989, 4, 95-109.	0.1	3

MARÃA ÂNGELES GIL ÂLVAREZ

#	Article	IF	CITATIONS
91	A family of measures of uncertainty involving utilities: Definition, properties, applications and statistical inferences. Metrika, 1989, 36, 129-147.	0.5	15
92	The likelihood ratio test for goodness of fit with fuzzy experimental observations. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19, 771-779.	0.9	19
93	On some information measures of degree β = 2: estimation in simple-stage cluster sampling. Statistics and Probability Letters, 1989, 8, 157-162.	0.4	6
94	A note on the choice of sample size in estimating the mutual information. Applied Mathematics and Computation, 1989, 30, 125-132.	1.4	4
95	A note on the operativenss of Neyman-Pearson tests with fuzzy information. Fuzzy Sets and Systems, 1989, 30, 215-220.	1.6	21
96	On the loss of information due to fuzziness in experimental observations. Annals of the Institute of Statistical Mathematics, 1988, 40, 627-639.	0.5	18
97	The minimum inaccuracy estimates in χ2 tests for goodness of fit with fuzzy observations. Journal of Statistical Planning and Inference, 1988, 19, 95-115.	0.4	33
98	A note on interval estimation with fuzzy data. Fuzzy Sets and Systems, 1988, 28, 209-215.	1.6	17
99	The choice of sample size in estimating mutual information. Applied Mathematics and Computation, 1988, 27, 201-216.	1.4	10
100	An operative extension of the likelihood ratio test from fuzzy data. Statistical Papers, 1988, 29, 191-203.	0.7	15
101	The gini-simpson index of diversity: estimation in the stratified sampling. Communications in Statistics - Theory and Methods, 1988, 17, 2981-2995.	0.6	30
102	The choice of sample size in estimating entropy according to a stratified sampling. Lecture Notes in Computer Science, 1988, , 102-111.	1.0	2
103	Probabilistic-Possibilistic Approach to Some Statistical Problems with Fuzzy Experimental Observations. Lecture Notes in Economics and Mathematical Systems, 1988, , 286-306.	0.3	12
104	THE MINIMUM INACCURACY PRINCIPLE IN ESTIMATING POPULATION PARAMETERS FROM GROUPED DATA. Kybernetes, 1987, 16, 43-49.	1.2	5
105	Fuzziness and loss of information in statistical problems. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17, 1016-1025.	0.9	26
106	An extensive-form analysis for comparing fuzzy information systems by means of the worth and quietness of information. Fuzzy Sets and Systems, 1987, 23, 239-255.	1.6	6
107	On a principle of choice among Bayes actions and its application for comparing experiments. RAIRO - Operations Research, 1987, 21, 259-279.	1.0	1
108	ESTIMATING THE UNCERTAINTY ASSOCIATED WITH A VARIABLE IN A FINITE POPULATION. Kybernetes, 1986, 15, 251-256.	1.2	12

#	Article	IF	CITATIONS
109	On the use of zadeh's probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems, 1986, 20, 175-190.	1.6	75
110	The fuzzy decision problem: An approach to the problem of testing statistical hypotheses with fuzzy information. European Journal of Operational Research, 1986, 27, 371-382.	3.5	66
111	Unbiased estimation of income inequality. Statistische Hefte, 1986, 27, 227-237.	0.4	9
112	The fuzzy decision problem: An approach to the point estimation problem with fuzzy information. European Journal of Operational Research, 1985, 22, 26-34.	3.5	41
113	Quantity of information; Comparison between information systems: 1. Non-fuzzy states. Fuzzy Sets and Systems, 1985, 15, 65-78.	1.6	24
114	Quantity of information; comparison between information systems: 2. Fuzzy states. Fuzzy Sets and Systems, 1985, 15, 129-145.	1.6	13
115	COMPARISON BETWEEN FUZZY INFORMATION SYSTEMS. Kybernetes, 1984, 13, 245-251.	1.2	23
116	Caracterizacion axiomatica para la varianza. Trabajos De EstadÃstica Y De Investigación Operativa, 1983, 34, 40-51.	0.1	0
117	Estudio de una medida para la incertidumbre correspondiente a las utilidades. Trabajos De EstadÃstica Y De Investigación Operativa, 1981, 32, 45-66.	0.1	6