
Bernardo L Sabatini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Medicine, 2008, 14, 837-842.	15.2	3,225
2	Natural Oligomers of the Alzheimer Amyloid-Â Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. Journal of Neuroscience, 2007, 27, 2866-2875.	1.7	1,445
3	ScanImage: Flexible software for operating laser scanning microscopes. BioMedical Engineering OnLine, 2003, 2, 13.	1.3	1,126
4	Structure and Function of Dendritic Spines. Annual Review of Physiology, 2002, 64, 313-353.	5.6	1,050
5	All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 2014, 11, 825-833.	9.0	666
6	Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347, 188-194.	6.0	662
7	The Life Cycle of Ca2+ Ions in Dendritic Spines. Neuron, 2002, 33, 439-452.	3.8	652
8	Anatomical and Physiological Plasticity of Dendritic Spines. Annual Review of Neuroscience, 2007, 30, 79-97.	5.0	569
9	Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum. Neuron, 2012, 76, 33-50.	3.8	558
10	Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 2012, 490, 262-266.	13.7	493
11	Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. ELife, 2018, 7, .	2.8	489
12	Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neuroscience, 2005, 8, 1727-1734.	7.1	469
13	SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 2005, 8, 642-649.	7.1	398
14	Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nature Neuroscience, 2018, 21, 120-129.	7.1	394
15	Timing of neurotransmission at fast synapses in the mammalian brain. Nature, 1996, 384, 170-172.	13.7	380
16	Glutamate induces de novo growth of functional spines in developing cortex. Nature, 2011, 474, 100-104.	13.7	319
17	Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines. Science, 2005, 310, 866-869.	6.0	315
18	State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons. Neuron, 2004, 44, 483-493.	3.8	300

#	Article	IF	CITATIONS
19	Facilitation at single synapses probed with optical quantal analysis. Nature Neuroscience, 2002, 5, 657-664.	7.1	290
20	The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection. Cell, 2018, 174, 44-58.e17.	13.5	290
21	Excitatory/Inhibitory Synaptic Imbalance Leads to Hippocampal Hyperexcitability in Mouse Models of Tuberous Sclerosis. Neuron, 2013, 78, 510-522.	3.8	283
22	Ca2+ signaling in dendritic spines. Current Opinion in Neurobiology, 2001, 11, 349-356.	2.0	266
23	A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nature Chemical Biology, 2018, 14, 352-360.	3.9	264
24	Analysis of calcium channels in single spines using optical fluctuation analysis. Nature, 2000, 408, 589-593.	13.7	255
25	Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines. Neuron, 2007, 53, 249-260.	3.8	253
26	Recombinant Probes for Visualizing Endogenous Synaptic Proteins in Living Neurons. Neuron, 2013, 78, 971-985.	3.8	251
27	Control of Neurotransmitter Release by Presynaptic Waveform at the Granule Cell to Purkinje Cell Synapse. Journal of Neuroscience, 1997, 17, 3425-3435.	1.7	243
28	A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 2015, 521, 85-89.	13.7	242
29	Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone. Neuron, 2012, 73, 511-522.	3.8	239
30	Imaging Calcium Concentration Dynamics in Small Neuronal Compartments. Science Signaling, 2004, 2004, pl5-pl5.	1.6	238
31	Plasticity of calcium channels in dendritic spines. Nature Neuroscience, 2003, 6, 948-955.	7.1	233
32	Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nature Neuroscience, 2010, 13, 958-966.	7.1	226
33	Destabilization of the Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and Synaptic Plasticity. Neuron, 2008, 60, 788-802.	3.8	224
34	Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations. Neuron, 2008, 59, 902-913.	3.8	196
35	Transsynaptic Signaling by Activity-Dependent Cleavage of Neuroligin-1. Neuron, 2012, 76, 396-409.	3.8	196
36	Loss of Tsc1 In Vivo Impairs Hippocampal mGluR-LTD and Increases Excitatory Synaptic Function. Journal of Neuroscience, 2011, 31, 8862-8869.	1.7	194

#	Article	IF	CITATIONS
37	Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3Bâ^'/â^' mice. Nature Neuroscience, 2016, 19, 716-724.	7.1	192
38	Population imaging of neural activity in awake behaving mice. Nature, 2019, 574, 413-417.	13.7	190
39	Mechanisms and functions of GABA co-release. Nature Reviews Neuroscience, 2016, 17, 139-145.	4.9	189
40	Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15414-15419.	3.3	172
41	Multipoint-Emitting Optical Fibers for Spatially Addressable InÂVivo Optogenetics. Neuron, 2014, 82, 1245-1254.	3.8	169
42	Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nature Neuroscience, 2006, 9, 798-806.	7.1	165
43	Corelease of acetylcholine and GABA from cholinergic forebrain neurons. ELife, 2015, 4, .	2.8	162
44	Molecular Dissociation of the Role of PSD-95 in Regulating Synaptic Strength and LTD. Neuron, 2008, 57, 248-262.	3.8	161
45	Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number. Nature Neuroscience, 2012, 15, 1667-1674.	7.1	159
46	Recurrent network activity drives striatal synaptogenesis. Nature, 2012, 485, 646-650.	13.7	159
47	Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. ELife, 2014, 3, e01936.	2.8	159
48	Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy. Neuron, 2009, 63, 429-437.	3.8	155
49	Cholinergic Interneurons Mediate Fast VGluT3-Dependent Glutamatergic Transmission in the Striatum. PLoS ONE, 2011, 6, e19155.	1.1	155
50	Caveolae in CNS arterioles mediate neurovascular coupling. Nature, 2020, 579, 106-110.	13.7	153
51	Calcium Signaling in Dendritic Spines. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005686-a005686.	2.3	152
52	Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nature Neuroscience, 2017, 20, 1180-1188.	7.1	151
53	Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron, 2017, 94, 138-152.e5.	3.8	146
54	Molecular and anatomical organization of the dorsal raphe nucleus. ELife, 2019, 8, .	2.8	140

#	Article	IF	CITATIONS
55	M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels. Neuron, 2010, 68, 936-947.	3.8	139
56	Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy. Biophysical Journal, 2013, 104, 770-777.	0.2	138
57	Optically Selective Two-Photon Uncaging of Glutamate at 900 nm. Journal of the American Chemical Society, 2013, 135, 5954-5957.	6.6	137
58	Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience, 2020, 23, 1629-1636.	7.1	133
59	Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Frontiers in Neural Circuits, 2012, 6, 47.	1.4	131
60	Imaging Neurotransmitter and Neuromodulator Dynamics InÂVivo with Genetically Encoded Indicators. Neuron, 2020, 108, 17-32.	3.8	130
61	Ca2+ signaling in dendritic spines. Current Opinion in Neurobiology, 2007, 17, 345-351.	2.0	127
62	Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell, 2018, 174, 1450-1464.e23.	13.5	118
63	Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular Nucleus. Neuron, 2019, 102, 636-652.e7.	3.8	118
64	Distinct Domains within PSD-95 Mediate Synaptic Incorporation, Stabilization, and Activity-Dependent Trafficking. Journal of Neuroscience, 2009, 29, 12845-12854.	1.7	114
65	Optical Measurement of Presynaptic Calcium Currents. Biophysical Journal, 1998, 74, 1549-1563.	0.2	113
66	Distinct Structural and Ionotropic Roles of NMDA Receptors in Controlling Spine and Synapse Stability. Journal of Neuroscience, 2007, 27, 7365-7376.	1.7	111
67	Biphasic Synaptic Ca Influx Arising from Compartmentalized Electrical Signals in Dendritic Spines. PLoS Biology, 2009, 7, e1000190.	2.6	111
68	A Nanobody-Based System Using Fluorescent Proteins as Scaffolds for Cell-Specific Gene Manipulation. Cell, 2013, 154, 928-939.	13.5	104
69	Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nature Neuroscience, 2020, 23, 1388-1398.	7.1	104
70	Spectral Evolution of a Photochemical Protecting Group for Orthogonal Two-Color Uncaging with Visible Light. Journal of the American Chemical Society, 2013, 135, 15948-15954.	6.6	102
71	Multiphasic Modulation of Cholinergic Interneurons by Nigrostriatal Afferents. Journal of Neuroscience, 2014, 34, 8557-8569.	1.7	100
72	Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature, 2021, 590, 451-456.	13.7	100

#	Article	IF	CITATIONS
73	Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to Synaptic NMDA Receptor Function and Ca ²⁺ Signaling in Spines. Journal of Neuroscience, 2014, 34, 869-879.	1.7	98
74	Principles of Synaptic Organization of GABAergic Interneurons in the Striatum. Neuron, 2016, 92, 84-92.	3.8	98
75	Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nature Neuroscience, 2009, 12, 1121-1128.	7.1	97
76	Depth-resolved fiber photometry with a single tapered optical fiber implant. Nature Methods, 2019, 16, 1185-1192.	9.0	97
77	Timing and Location of Synaptic Inputs Determine Modes of Subthreshold Integration in Striatal Medium Spiny Neurons. Journal of Neuroscience, 2007, 27, 8967-8977.	1.7	96
78	Semaphorin 3E–Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nature Neuroscience, 2012, 15, 215-223.	7.1	95
79	Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron, 2015, 86, 1174-1181.	3.8	95
80	Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors. Neuron, 2015, 88, 1227-1239.	3.8	90
81	Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalamic Nucleus and Striatal Interneurons. PLoS ONE, 2016, 11, e0149798.	1.1	88
82	CRISPR/Cas9-Mediated Gene Knock-Down in Post-Mitotic Neurons. PLoS ONE, 2014, 9, e105584.	1.1	84
83	Cotransmission of acetylcholine and GABA. Neuropharmacology, 2016, 100, 40-46.	2.0	81
84	Photoactivatable Neuropeptides for Spatiotemporally Precise Delivery of Opioids in Neural Tissue. Neuron, 2012, 73, 249-259.	3.8	80
85	Multi-transmitter neurons in the mammalian central nervous system. Current Opinion in Neurobiology, 2017, 45, 85-91.	2.0	78
86	A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Frontiers in Pharmacology, 2014, 5, 56.	1.6	76
87	Transient Sodium Current at Subthreshold Voltages: Activation by EPSP Waveforms. Neuron, 2012, 75, 1081-1093.	3.8	72
88	Pam (Protein associated with Myc) functions as an E3 Ubiquitin ligase and regulates TSC/mTOR signaling. Cellular Signalling, 2008, 20, 1084-1091.	1.7	70
89	Anatomical and single-cell transcriptional profiling of the murine habenular complex. ELife, 2020, 9, .	2.8	67
90	Signaling in dendritic spines and spine microdomains. Current Opinion in Neurobiology, 2012, 22, 389-396.	2.0	66

#	Article	IF	CITATIONS
91	Neuromodulation of excitatory synaptogenesis in striatal development. ELife, 2015, 4, .	2.8	62
92	The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue. Frontiers in Neuroscience, 2019, 13, 82.	1.4	62
93	A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron, 2016, 91, 25-33.	3.8	60
94	Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. Journal of Physiology, 2008, 586, 1519-1527.	1.3	58
95	Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Scientific Reports, 2018, 8, 4467.	1.6	57
96	Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. ELife, 2020, 9, .	2.8	57
97	A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy. Journal of Neuroscience Methods, 2007, 165, 122-134.	1.3	56
98	Optical super-resolution microscopy in neurobiology. Current Opinion in Neurobiology, 2012, 22, 86-93.	2.0	53
99	Endogenous Gαq-Coupled Neuromodulator Receptors Activate Protein Kinase A. Neuron, 2017, 96, 1070-1083.e5.	3.8	53
100	Dendritic spine detection using curvilinear structure detector and LDA classifier. NeuroImage, 2007, 36, 346-360.	2.1	52
101	Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties. Frontiers in Neuroanatomy, 2014, 8, 29.	0.9	43
102	An E3-ligase-based method for ablating inhibitory synapses. Nature Methods, 2016, 13, 673-678.	9.0	43
103	High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons. PLoS ONE, 2014, 9, e91744.	1.1	42
104	A Direct Projection from Mouse Primary Visual Cortex to Dorsomedial Striatum. PLoS ONE, 2014, 9, e104501.	1.1	41
105	Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Frontiers in Neuroscience, 2019, 13, 766.	1.4	40
106	Regulation of synaptic signalling by postsynaptic, nonâ€glutamate receptor ion channels. Journal of Physiology, 2008, 586, 1475-1480.	1.3	38
107	Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. Biomedical Optics Express, 2015, 6, 4014.	1.5	38
108	Single-Cell Analysis of Neuroinflammatory Responses Following Intracranial Injection of G-Deleted Rabies Viruses. Frontiers in Cellular Neuroscience, 2020, 14, 65.	1.8	35

#	Article	IF	CITATIONS
109	Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories. Cell, 2021, 184, 5622-5634.e25.	13.5	35
110	Striatal indirect pathway mediates exploration via collicular competition. Nature, 2021, 599, 645-649.	13.7	35
111	A Caged Enkephalin Optimized for Simultaneously Probing Mu and Delta Opioid Receptors. ACS Chemical Neuroscience, 2018, 9, 684-690.	1.7	34
112	Focused ion beam nanomachining of tapered optical fibers for patterned light delivery. Microelectronic Engineering, 2018, 195, 41-49.	1.1	34
113	Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins. Cell Reports, 2018, 22, 3351-3361.	2.9	32
114	Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. ELife, 2020, 9,	2.8	32
115	Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics. Molecular Pharmacology, 2013, 84, 687-695.	1.0	31
116	Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Reports, 2022, 38, 110416.	2.9	31
117	Development of Anionically Decorated Caged Neurotransmitters: In Vitro Comparison of 7â€Nitroindolinyl―and 2â€(<i>p</i> â€Phenylâ€ <i>o</i> â€nitrophenyl)propylâ€Based Photochemical Probes. ChemBioChem, 2016, 17, 953-961.	1.3	23
118	Cre Activated and Inactivated Recombinant Adenoâ€Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation. Current Protocols in Neuroscience, 2015, 72, 1.24.1-1.24.15.	2.6	21
119	Boosting of Synaptic Potentials and Spine Ca Transients by the Peptide Toxin SNX-482 Requires Alpha-1E-Encoded Voltage-Gated Ca Channels. PLoS ONE, 2011, 6, e20939.	1.1	20
120	Co-packaging of opposing neurotransmitters in individual synaptic vesicles in the central nervous system. Neuron, 2022, 110, 1371-1384.e7.	3.8	19
121	Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. Nature Materials, 2022, 21, 826-835.	13.3	18
122	Neurophotonic Tools for Microscopic Measurements and Manipulation: Status Report. Neurophotonics, 2022, 9, 013001.	1.7	17
123	Dendritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3 pyramidal cells. ELife, 2022, 11, .	2.8	16
124	Mice exhibit stochastic and efficient action switching during probabilistic decision making. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113961119.	3.3	15
125	Comparative study of autofluorescence in flat and tapered optical fibers towards application in depth-resolved fluorescence lifetime photometry in brain tissue. Biomedical Optics Express, 2021, 12, 993.	1.5	13
126	How to Grow a Synapse. Neuron, 2014, 82, 256-257.	3.8	12

#	Article	IF	CITATIONS
127	Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces. Optics Letters, 2020, 45, 3856.	1.7	11
128	Sunlight Brightens Learning and Memory. Cell, 2018, 173, 1570-1572.	13.5	9
129	Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
130	Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces. Optics Express, 2020, 28, 21368.	1.7	7
131	Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL Photonics, 2022, 7, 026106.	3.0	6
132	The Kinase Specificity of Protein Kinase Inhibitor Peptide. Frontiers in Pharmacology, 2021, 12, 632815.	1.6	5
133	Realâ€Time, In Vivo Measurement of Protein Kinase A Activity in Deep Brain Structures Using Fluorescence Lifetime Photometry (FLiP). Current Protocols, 2021, 1, e265.	1.3	5
134	Neighbourly synapses. Nature, 2007, 450, 1173-1175.	13.7	4
135	NeuronIQ: A novel computational approach for automatic dendrite spines detection and analysis. , 2007, , .		3
136	In vivo nuclear capture and molecular profiling identifies Gmeb1 as a transcriptional regulator essential for dopamine neuron function. Nature Communications, 2019, 10, 2508.	5.8	3
137	Analysis of Thermogenesis Experiments with CalR. Methods in Molecular Biology, 2022, 2448, 43-72.	0.4	3
138	Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems. , 2019, , .		1
139	Depth-Resolved Optical Monitoring of Neural Activity in Freely Moving Animals. , 2020, , .		1
140	Multipoint optogenetic control of neural activity with tapered and nanostructured optical fibers. , 2015, , .		0
141	Modeling Brain Tissue Scattering for Optical Neural Interfaces. , 2019, , .		Ο
142	Tapered Optical Fibers for Fluorescence Lifetime Photometry. , 2021, , .		0
143	Tapered Fibers Technology for Multi-functional Neural Interfaces. , 2020, , .		Ο
144	Tapered Optical Fibers toward Depth Resolved Fluorescence Lifetime Photometry in brain tissue. , 2021,		0

9