Lindong Luan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226785/publications.pdf

Version: 2024-02-01

13 papers	128 citations	1307594 7 h-index	1199594 12 g-index
13	13	13	83 citing authors
all docs	docs citations	times ranked	

#	Article	lF	CITATIONS
1	<i>N</i> -Methylimidazolium containing metal phosphate–oxalates: solvent-free synthesis, crystal structure, and proton conduction. CrystEngComm, 2022, 24, 743-746.	2.6	6
2	Open-framework scandium phosphate-oxalates: Solvent-free synthesis, proton conduction, and luminescence. Inorganic Chemistry Communication, 2022, 140, 109430.	3.9	2
3	Organically templated metal phosphate-oxalates: Solvent-free synthesis, crystal structure, and proton conduction. Inorganic Chemistry Communication, 2021, 124, 108403.	3.9	9
4	Indium phosphate oxalates with layered structures: Solvent-free approach, hydrothermal stability, and proton conduction. Inorganic Chemistry Communication, 2021, 133, 108975.	3.9	5
5	Metal phosphate-oxalates with unique framework topologies: Solvent-free synthesis, water stability, and proton conduction. Journal of Solid State Chemistry, 2020, 292, 121709.	2.9	13
6	Pillared-layered indium phosphites templated by amino acids: isoreticular structures, water stability, and fluorescence. Dalton Transactions, 2020, 49, 14766-14770.	3.3	4
7	Cluster–oxalate frameworks with extra-large channels: solvent-free synthesis, chemical stability, and proton conduction. Dalton Transactions, 2019, 48, 13130-13134.	3.3	10
8	Solvent-free synthesis of metal phosphate-oxalates with layered and zeolitic structures. Inorganic Chemistry Communication, 2018, 96, 65-68.	3.9	4
9	Two open-framework zinc phosphites constructed from different secondary building units. Inorganic Chemistry Communication, 2016, 72, 96-99.	3.9	2
10	A Hybrid Open-Framework Structure Containing Different Manganese Phosphate Chains as Its Building Blocks. Inorganic Chemistry, 2015, 54, 19-21.	4.0	12
11	Solvent-free synthesis of new inorganic–organic hybrid solids with finely tuned manganese oxalate structures. Dalton Transactions, 2015, 44, 5974-5977.	3.3	9
12	Solvent-free synthesis of new metal phosphate–oxalates: influence of different metal ions on the framework structures. Dalton Transactions, 2015, 44, 13485-13489.	3.3	18
13	Solvent-Free Synthesis of Crystalline Metal Phosphate Oxalates with a (4,6)-Connected fsh Topology. Inorganic Chemistry, 2015, 54, 9387-9389.	4.0	34