Anurag A Agrawal

List of Publications by Citations

Source: https://exaly.com/author-pdf/7226424/anurag-a-agrawal-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

246 20,555 140 77 h-index g-index citations papers 6.8 269 7.58 23,344 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
246	The ecology and evolution of plant tolerance to herbivory. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 179-185	10.9	1163
245	Phenotypic plasticity in the interactions and evolution of species. <i>Science</i> , 2001 , 294, 321-6	33.3	1156
244	Transgenerational induction of defences in animals and plants. <i>Nature</i> , 1999 , 401, 60-63	50.4	611
243	Biotic interactions and plant invasions. <i>Ecology Letters</i> , 2006 , 9, 726-40	10	570
242	Plant defense syndromes. <i>Ecology</i> , 2006 , 87, S132-49	4.6	470
241	Specialist versus generalist insect herbivores and plant defense. <i>Trends in Plant Science</i> , 2012 , 17, 293-	3023.1	466
240	Induced responses to herbivory and increased plant performance. <i>Science</i> , 1998 , 279, 1201-2	33.3	462
239	Re-evaluating the costs and limits of adaptive phenotypic plasticity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 503-11	4.4	431
238	Macroevolution and the biological diversity of plants and herbivores. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18054-61	11.5	403
237	A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. <i>Journal of Chemical Ecology</i> , 2003 , 29, 1403-15	2.7	345
236	Filling key gaps in population and community ecology. <i>Frontiers in Ecology and the Environment</i> , 2007 , 5, 145-152	5.5	343
235	Current trends in the evolutionary ecology of plant defence. Functional Ecology, 2011, 25, 420-432	5.6	334
234	Herbivory in the previous generation primes plants for enhanced insect resistance. <i>Plant Physiology</i> , 2012 , 158, 854-63	6.6	316
233	ENEMY RELEASE? AN EXPERIMENT WITH CONGENERIC PLANT PAIRS AND DIVERSE ABOVE- AND BELOWGROUND ENEMIES. <i>Ecology</i> , 2005 , 86, 2979-2989	4.6	309
232	Insect herbivores drive real-time ecological and evolutionary change in plant populations. <i>Science</i> , 2012 , 338, 113-6	33.3	308
231	Macroevolution of plant defense strategies. <i>Trends in Ecology and Evolution</i> , 2007 , 22, 103-9	10.9	292
230	Transgenerational defense induction and epigenetic inheritance in plants. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 618-26	10.9	270

229	PLANT GENOTYPE AND ENVIRONMENT INTERACT TO SHAPE A DIVERSE ARTHROPOD COMMUNITY ON EVENING PRIMROSE (OENOTHERA BIENNIS). <i>Ecology</i> , 2005 , 86, 874-885	4.6	267	
228	COSTS OF INDUCED RESPONSES AND TOLERANCE TO HERBIVORY IN MALE AND FEMALE FITNESS COMPONENTS OF WILD RADISH. <i>Evolution; International Journal of Organic Evolution</i> , 1999 , 53, 1093-1	104	267	
227	Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2009 , 40, 311-331	13.5	265	
226	Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. <i>New Phytologist</i> , 2012 , 194, 28-45	9.8	257	
225	Herbivore Offense. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 641-664		253	
224	INDUCED RESPONSES TO HERBIVORY IN WILD RADISH: EFFECTS ON SEVERAL HERBIVORES AND PLANT FITNESS. <i>Ecology</i> , 1999 , 80, 1713-1723	4.6	245	
223	Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. <i>Annual Review of Plant Biology</i> , 2017 , 68, 513-534	30.7	229	
222	Herbivores and the success of exotic plants: a phylogenetically controlled experiment. <i>Ecology Letters</i> , 2003 , 6, 712-715	10	225	
221	Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. <i>Ecology Letters</i> , 2006 , 9, 24-34	10	221	
220	Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. <i>Oikos</i> , 2000 , 89, 493-500	4	217	
219	Community heterogeneity and the evolution of interactions between plants and insect herbivores. <i>Quarterly Review of Biology</i> , 2006 , 81, 349-76	5.4	196	
218	Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. <i>Trends in Plant Science</i> , 2000 , 5, 309-13	13.1	186	
217	Induced plant responses and information content about risk of herbivory. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 443-447	10.9	185	
216	Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. <i>Ecology</i> , 2007 , 88, 1021-9	4.6	182	
215	Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13040-5	11.5	180	
214	Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2206-13	3.8	169	
213	COMMUNITY-WIDE IMPACTS OF HERBIVORE-INDUCED PLANT RESPONSES IN MILKWEED (ASCLEPIAS SYRIACA). <i>Ecology</i> , 2004 , 85, 2616-2629	4.6	163	
212	Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. <i>Ecology Letters</i> , 2011 , 14, 476-83	10	159	

211	HOST-RANGE EVOLUTION: ADAPTATION AND TRADE-OFFS IN FITNESS OF MITES ON ALTERNATIVE HOSTS. <i>Ecology</i> , 2000 , 81, 500-508	4.6	159
210	Mechanisms and evolution of plant resistance to aphids. <i>Nature Plants</i> , 2016 , 2, 15206	11.5	157
209	Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect?. <i>American Naturalist</i> , 2001 , 157, 555-69	3.7	151
208	A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. <i>Ecology</i> , 2011 , 92, 915-23	4.6	148
207	THE BENEFITS OF INDUCED DEFENSES AGAINST HERBIVORES. <i>Ecology</i> , 1997 , 78, 1351-1355	4.6	148
206	Costs of Induced Responses and Tolerance to Herbivory in Male and Female Fitness Components of Wild Radish. <i>Evolution; International Journal of Organic Evolution</i> , 1999 , 53, 1093	3.8	142
205	Evolution of plant resistance and tolerance to frost damage. <i>Ecology Letters</i> , 2004 , 7, 1199-1208	10	140
204	Phylogenetic escalation and decline of plant defense strategies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 10057-60	11.5	139
203	Dynamic Anti-Herbivore Defense in Ant-Plants: The Role of Induced Responses. <i>Oikos</i> , 1998 , 83, 227	4	132
202	HERBIVORY AND MATERNAL EFFECTS: MECHANISMS AND CONSEQUENCES OF TRANSGENERATIONAL INDUCED PLANT RESISTANCE. <i>Ecology</i> , 2002 , 83, 3408-3415	4.6	128
201	Plants talk, but are they deaf?. Trends in Plant Science, 2003, 8, 403-5	13.1	127
200	RESISTANCE AND SUSCEPTIBILITY OF MILKWEED: COMPETITION, ROOT HERBIVORY, AND PLANT GENETIC VARIATION. <i>Ecology</i> , 2004 , 85, 2118-2133	4.6	124
199	Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. <i>Current Opinion in Plant Biology</i> , 2000 , 3, 329-35	9.9	121
198	Salicylate-mediated interactions between pathogens and herbivores. <i>Ecology</i> , 2010 , 91, 1075-82	4.6	119
197	Adaptive geographical clines in the growth and defense of a native plant. <i>Ecological Monographs</i> , 2012 , 82, 149-168	9	118
196	BENEFITS AND COSTS OF INDUCED PLANT DEFENSE FOR LEPIDIUM VIRGINICUM (BRASSICACEAE). <i>Ecology</i> , 2000 , 81, 1804-1813	4.6	118
195	Specificity of induced plant responses to specialist herbivores of the common milkweed Asclepias syriaca. <i>Oikos</i> , 2004 , 104, 401-409	4	116

(2000-2009)

193	Evidence for adaptive radiation from a phylogenetic study of plant defenses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18067-72	11.5	111
192	INFLUENCE OF PREY AVAILABILITY AND INDUCED HOST-PLANT RESISTANCE ON OMNIVORY BY WESTERN FLOWER THRIPS. <i>Ecology</i> , 1999 , 80, 518-523	4.6	109
191	Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. <i>Current Opinion in Plant Biology</i> , 2009 , 12, 473-8	9.9	106
190	On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. <i>Ecology Letters</i> , 2015 , 18, 985-91	10	104
189	Domatia mediate plantarthropod mutualism. <i>Nature</i> , 1997 , 387, 562-563	50.4	103
188	Defense mutualisms enhance plant diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16442-7	11.5	101
187	Evolutionary trade-offs in plants mediate the strength of trophic cascades. <i>Science</i> , 2010 , 327, 1642-4	33.3	101
186	The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. <i>Journal of Animal Ecology</i> , 2001 , 70, 997-1005	4.7	96
185	Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. <i>Journal of Ecology</i> , 2011 , 99, 16-25	6	95
184	Heritability, covariation and natural selection on 24 traits of common evening primrose (Oenothera biennis) from a field experiment. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 1295-307	2.3	94
183	Plant defense and density dependence in the population growth of herbivores. <i>American Naturalist</i> , 2004 , 164, 113-20	3.7	94
182	What is Phenotypic Plasticity and Why is it Important? 2009,		94
181	Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. <i>Evolution; International Journal of Organic Evolution</i> , 2009 , 63, 663-73	3.8	92
180	Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense. <i>American Naturalist</i> , 2008 , 171, E195-205	3.7	92
179	Linking the continental migratory cycle of the monarch butterfly to understand its population decline. <i>Oikos</i> , 2016 , 125, 1081-1091	4	92
178	Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. <i>New Phytologist</i> , 2009 , 183, 848-867	9.8	88
177	An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. <i>Ecology Letters</i> , 2002 , 5, 377-385	10	87
176	How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. <i>Oikos</i> , 2000 , 89, 70-80	4	82

175	Polymorphism in Plant Defense Against Herbivory: Constitutive and Induced Resistance in Cucumis sativus. <i>Journal of Chemical Ecology</i> , 1999 , 25, 2285-2304	2.7	82
174	How herbivores coopt plant defenses: natural selection, specialization, and sequestration. <i>Current Opinion in Insect Science</i> , 2016 , 14, 17-24	5.1	81
173	Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity?. <i>American Naturalist</i> , 2002 , 159, 553-65	3.7	81
172	What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by omnivores. <i>Journal of Animal Ecology</i> , 2000 , 69, 525-535	4.7	79
171	Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. <i>Functional Ecology</i> , 2014 , 28, 1404-1412	5.6	78
170	Phylogeny, ecology, and the coupling of comparative and experimental approaches. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 394-403	10.9	78
169	LEAF DAMAGE AND ASSOCIATED CUES INDUCE AGGRESSIVE ANT RECRUITMENT IN A NEOTROPICAL ANT-PLANT. <i>Ecology</i> , 1998 , 79, 2100-2112	4.6	77
168	Future directions in the study of induced plant responses to herbivory. <i>Entomologia Experimentalis Et Applicata</i> , 2005 , 115, 97-105	2.1	75
167	Algal defense, grazers, and their interactions in aquatic trophic cascades. <i>Acta Oecologica</i> , 1998 , 19, 33	1-∄∌7	74
166	Specificity and trade-offs in the induced plant defence of common milkweed Asclepias syriaca to two lepidopteran herbivores. <i>Journal of Ecology</i> , 2010 , 98, 1014-1022	6	68
165	Induced responses to herbivory and jasmonate in three milkweed species. <i>Journal of Chemical Ecology</i> , 2009 , 35, 1326-34	2.7	68
164	Evolutionary history predicts plant defense against an invasive pest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7070-4	11.5	68
163	Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20151865	4.4	67
162	Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis sativus. <i>Functional Ecology</i> , 2005 , 19, 1025-1031	5.6	67
161	A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. <i>Ecology</i> , 2020 , 101, e02924	4.6	66
160	A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations. <i>American Naturalist</i> , 2013 , 181 Suppl 1, S35-45	3.7	62
159	Parental effects in Pieris rapae in response to variation in food quality: adaptive plasticity across generations?. <i>Ecological Entomology</i> , 2003 , 28, 211-218	2.1	61
158	Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). <i>American Naturalist</i> , 2011 , 177, 728-37	3.7	59

157	The raison d'Ere of chemical ecology. <i>Ecology</i> , 2015 , 96, 617-30	4.6	58
156	Evolution of latex and its constituent defensive chemistry in milkweeds (Asclepias): a phylogenetic test of plant defense escalation. <i>Entomologia Experimentalis Et Applicata</i> , 2008 , 128, 126-138	2.1	58
155	Phenotypic plasticity to light competition and herbivory in Chenopodium album (Chenopodiaceae). <i>American Journal of Botany</i> , 2005 , 92, 21-6	2.7	58
154	Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. <i>Oikos</i> , 2008 , 117, 450-458	4	57
153	Specificity of constitutive and induced resistance: pigment glands influence mites and caterpillars on cotton plants. <i>Entomologia Experimentalis Et Applicata</i> , 2000 , 96, 39-49	2.1	57
152	INTEGRATING PHYLOGENIES INTO COMMUNITY ECOLOGY1. <i>Ecology</i> , 2006 , 87, S1-S2	4.6	56
151	Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life. <i>American Naturalist</i> , 2017 , 190, S1-S12	3.7	55
150	Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.). <i>Ecology</i> , 2009 , 90, 2393-404	4.6	55
149	COMMUNITY GENETICS: NEW INSIGHTS INTO COMMUNITY ECOLOGY BY INTEGRATING POPULATION GENETICS1. <i>Ecology</i> , 2003 , 84, 543-544	4.6	55
148	The Monarch Butterfly through Time and Space: The Social Construction of an Icon. <i>BioScience</i> , 2015 , 65, 612-622	5.7	54
147	Growthdefense tradeoffs for two major anti-herbivore traits of the common milkweed Asclepias syriaca. <i>Oikos</i> , 2015 , 124, 1404-1415	4	54
146	Genome editing retraces the evolution of toxin resistance in the monarch butterfly. <i>Nature</i> , 2019 , 574, 409-412	50.4	52
145	Herbivory enhances positive effects of plant genotypic diversity. <i>Ecology Letters</i> , 2010 , 13, 553-63	10	49
144	Coexistence of three specialist aphids on common milkweed, Asclepias syriaca. <i>Ecology</i> , 2008 , 89, 2187-	-96 6	49
143	INTENSE DISTURBANCE ENHANCES PLANT SUSCEPTIBILITY TO HERBIVORY: NATURAL AND EXPERIMENTAL EVIDENCE. <i>Ecology</i> , 2003 , 84, 890-897	4.6	49
142	Covariation and composition of arthropod species across plant genotypes of evening primrose, Oenothera biennis. <i>Oikos</i> , 2007 , 116, 941-956	4	48
141	Induced Plant Resistance and Susceptibility to Late-Season Herbivores of Wild Radish. <i>Annals of the Entomological Society of America</i> , 2001 , 94, 71-75	2	48
140	Induced responses to herbivory in the Neotropical ant-plant association between Azteca ants and Cecropia trees: response of ants to potential inducing cues. <i>Behavioral Ecology and Sociobiology</i> , 1999 , 45, 47-54	2.5	47

139	Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of Asclepias. <i>Functional Ecology</i> , 2012 , 26, 1100-1110	5.6	46
138	Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). <i>Journal of Chemical Ecology</i> , 2012 , 38, 893	s- 9 071	46
137	Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. <i>Evolution; International Journal of Organic Evolution</i> , 2010 , 64, 3024-34	3.8	46
136	Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata). <i>Journal of Ecology</i> , 2008 , 96, 536-542	6	45
135	Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. <i>New Phytologist</i> , 2015 , 206, 796-806	9.8	44
134	Mechanisms behind the monarch's decline. <i>Science</i> , 2018 , 360, 1294-1296	33.3	43
133	Ants defend aphids against lethal disease. <i>Biology Letters</i> , 2010 , 6, 205-8	3.6	42
132	Do leaf domatia mediate a plantthite mutualism? An experimental test of the effects on predators and herbivores. <i>Ecological Entomology</i> , 1997 , 22, 371-376	2.1	42
131	Learning in Insect Pollinators and Herbivores. <i>Annual Review of Entomology</i> , 2017 , 62, 53-71	21.8	41
130	Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed. <i>Journal of Ecology</i> , 2003 , 91, 1049-1059	6	41
129	Corruption of journal Impact Factors. <i>Trends in Ecology and Evolution</i> , 2005 , 20, 157	10.9	40
128	Intraspecific variation in the strength of density dependence in aphid populations. <i>Ecological Entomology</i> , 2004 , 29, 521-526	2.1	40
127	Population Variation, Environmental Gradients, and the Evolutionary Ecology of Plant Defense against Herbivory. <i>American Naturalist</i> , 2019 , 193, 20-34	3.7	39
126	Evolution of plant growth and defense in a continental introduction. <i>American Naturalist</i> , 2015 , 186, E1-E15	3.7	37
125	Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2000 , 267, 1857-61	4.4	35
124	Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (adoxaceae). <i>American Naturalist</i> , 2012 , 180, 450-63	3.7	34
123	Plant-herbivore coevolution and plant speciation. <i>Ecology</i> , 2019 , 100, e02704	4.6	33
122	First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 3151-6	2.2	32

(2011-2014)

121	Deer browsing delays succession by altering aboveground vegetation and belowground seed banks. <i>PLoS ONE</i> , 2014 , 9, e91155	3.7	31
120	Assessing the Impact of Climate Change on Outbreak Potential 2012 , 429-450		31
119	Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. <i>Functional Ecology</i> , 2016 , 30, 547-556	5.6	30
118	Benefits and Costs of Induced Plant Defense for Lepidium virginicum (Brassicaceae). <i>Ecology</i> , 2000 , 81, 1804	4.6	30
117	Multidrug transporters and organic anion transporting polypeptides protect insects against the toxic effects of cardenolides. <i>Insect Biochemistry and Molecular Biology</i> , 2017 , 81, 51-61	4.5	29
116	The ecological play of predatorBrey dynamics in an evolutionary theatre. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 549-551	10.9	28
115	Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.). <i>Journal of Chemical Ecology</i> , 2014 , 40, 717-29	2.7	27
114	Polymorphic buttonwood: effects of disturbance on resistance to herbivores in green and silver morphs of a Bahamian shrub. <i>American Journal of Botany</i> , 2004 , 91, 1990-7	2.7	27
113	Ant Ephid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. <i>Oikos</i> , 2012 , 121, 1905-1913	4	26
112	Interactive effects of genotype, environment, and ontogeny on resistance of cucumber (Cucumis sativus) to the generalist herbivore, Spodoptera exigua. <i>Journal of Chemical Ecology</i> , 2004 , 30, 37-51	2.7	26
111	Rapid herbivore-induced changes in mountain birch phenolics and nutritive compounds and their effects on performance of the major defoliator, Epirrita autumnata. <i>Journal of Chemical Ecology</i> , 2004 , 30, 303-21	2.7	26
110	Spatial Synchrony of Insect Outbreaks 2012 , 113-125		23
109	Chinese mantids gut toxic monarch caterpillars: avoidance of prey defence?. <i>Ecological Entomology</i> , 2013 , 38, 76-82	2.1	23
108	Density dependent population growth of the two-spotted spider mite, Tetranychus urticae, on the host plant Leonurus cardiaca. <i>Oikos</i> , 2003 , 103, 559-565	4	23
107	Landscape Ecology Comes of Age1. <i>Ecology</i> , 2005 , 86, 1965-1966	4.6	23
106	Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny. <i>Journal of Chemical Ecology</i> , 2019 , 45, 264-277	2.7	22
105	Relative Selectivity of Plant Cardenolides for Na/K-ATPases From the Monarch Butterfly and Non-resistant Insects. <i>Frontiers in Plant Science</i> , 2018 , 9, 1424	6.2	22
104	New synthesistrade-offs in chemical ecology. <i>Journal of Chemical Ecology</i> , 2011 , 37, 230-1	2.7	21

103	Monarchs and Milkweed 2017 ,		21
102	INDUCED RESPONSES TO HERBIVORY IN WILD RADISH: EFFECTS ON SEVERAL HERBIVORES AND PLANT FITNESS 1999 , 80, 1713		21
101	Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. <i>Journal of Chemical Ecology</i> , 2019 , 45, 50-60	2.7	21
100	Linking Individual-Scale Trait Plasticity to Community Dynamics1. <i>Ecology</i> , 2003 , 84, 1081-1082	4.6	20
99	Above-ground herbivory by red milkweed beetles facilitates above- and below-ground conspecific insects and reduces fruit production in common milkweed. <i>Journal of Ecology</i> , 2014 , 102, 1038-1047	6	19
98	Exotic plants contribute positively to biodiversity functions but reduce native seed production and arthropod richness. <i>Ecology</i> , 2014 , 95, 1642-50	4.6	19
97	Tests of the coupled expression of latex and cardenolide plant defense in common milkweed (Asclepias syriaca). <i>Ecosphere</i> , 2014 , 5, art126	3.1	18
96	Insect Outbreaks in Tropical Forests: Patterns, Mechanisms, and Consequences 2012 , 219-245		18
95	PERMANENT GENETIC RESOURCES: Isolation and characterization of polymorphic microsatellite loci in common evening primrose (Oenothera biennis). <i>Molecular Ecology Resources</i> , 2008 , 8, 434-6	8.4	18
94	Communication between plants: this time it's real. <i>Trends in Ecology and Evolution</i> , 2000 , 15, 446	10.9	18
93	Specific impacts of two root herbivores and soil nutrients on plant performance and insectInsect interactions. <i>Oikos</i> , 2013 , 122, 1746-1756	4	17
92	Plant chemical defense indirectly mediates aphid performance via interactions with tending ants. <i>Ecology</i> , 2017 , 98, 601-607	4.6	16
91	Love thy neighbor? reciprocal impacts between plant community structure and insect herbivory in co-occurring Asteraceae. <i>Ecology</i> , 2014 , 95, 2904-2914	4.6	16
90	Insect Herbivore Outbreaks Viewed through a Physiological Framework: Insights from Orthoptera 2012 , 1-29		16
89	Trade-offs constrain the evolution of an inducible defense within but not between plant species. <i>Ecology</i> , 2019 , 100, e02857	4.6	15
88	Evolutionary potential of root chemical defense: genetic correlations with shoot chemistry and plant growth. <i>Journal of Chemical Ecology</i> , 2012 , 38, 992-5	2.7	15
87	The Ecological Consequences of Insect Outbreaks 2012 , 197-218		15
86	Ant mutualists alter the composition and attack rate of the parasitoid community for the gall wasp Disholcaspis eldoradensis (Cynipidae). <i>Ecological Entomology</i> , 2004 , 29, 692-696	2.1	15

(2018-2017)

85	Trade-offs and tritrophic consequences of host shifts in specialized root herbivores. <i>Functional Ecology</i> , 2017 , 31, 153-160	5.6	14
84	The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes. <i>Ecology</i> , 2015 , 96, 2632-42	4.6	14
83	ECOLOGICAL GENETICS OF AN INDUCED PLANT DEFENSE AGAINST HERBIVORES: ADDITIVE GENETIC VARIANCE AND COSTS OF PHENOTYPIC PLASTICITY. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2206	3.8	14
82	Consequences of toxic secondary compounds in nectar for mutualist bees and antagonist butterflies. <i>Ecology</i> , 2016 , 97, 2570-2579	4.6	14
81	Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions. <i>Current Opinion in Insect Science</i> , 2019 , 32, 61-67	5.1	14
80	A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds. <i>Journal of Chemical Ecology</i> , 2013 , 39, 1101-11	2.7	13
79	Implications of Host-Associated Differentiation in the Control of Pest Species 2012 , 291-310		13
78	Mechanisms of constraints: the contributions of selection and genetic variance to the maintenance of cotyledon number in wild radish. <i>Journal of Evolutionary Biology</i> , 2005 , 18, 238-42	2.3	13
77	Consequences of thrips-infested plants for attraction of conspecifics and parasitoids. <i>Ecological Entomology</i> , 2000 , 25, 493-496	2.1	13
76	Beyond preference and performance: host plant selection by monarch butterflies, Danaus plexippus. <i>Oikos</i> , 2019 , 128, 1092-1102	4	12
75	Historically browsed jewelweed populations exhibit greater tolerance to deer herbivory than historically protected populations. <i>Journal of Ecology</i> , 2015 , 103, 243-249	6	12
74	Four more reasons to be skeptical of open-access publishing. <i>Trends in Plant Science</i> , 2014 , 19, 133	13.1	12
73	What Tree-Ring Reconstruction Tells Us about Conifer Defoliator Outbreaks 2012 , 126-154		12
72	Systematic survey of discrepancy rates in an international teleradiology service. <i>Emergency Radiology</i> , 2011 , 18, 23-9	3	12
71	Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.). <i>New Phytologist</i> , 2016 , 209, 1230-9	9.8	12
70	HOST-RANGE EVOLUTION: ADAPTATION AND TRADE-OFFS IN FITNESS OF MITES ON ALTERNATIVE HOSTS 2000 , 81, 500		11
69	Phylogeny of the plant genus Pachypodium (Apocynaceae). <i>PeerJ</i> , 2013 , 1, e70	3.1	11
68	Insect herbivory and plant adaptation in an early successional community. <i>Evolution; International Journal of Organic Evolution</i> , 2018 , 72, 1020-1033	3.8	10

67	Oviposition strategy as a means of local adaptation to plant defence in native and invasive populations of the viburnum leaf beetle. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 952-8	4.4	10
66	The Statistics of Rarity1. <i>Ecology</i> , 2005 , 86, 1079-1080	4.6	10
65	Benefits and Constraints on Plant Defense against Herbivores: Spines Influence the Legitimate and Illegitimate Flower Visitors of Yellow Star Thistle, Centaurea solstitialis L. (Asteraceae). <i>Southwestern Naturalist</i> , 2000 , 45, 1	0.3	10
64	Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	10
63	Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo. Journal of Chemical Ecology, 2019 , 45, 313-325	2.7	9
62	Do plant defenses predict damage by an invasive herbivore? A comparative study of the viburnum leaf beetle 2014 , 24, 759-69		8
61	Plant-Induced Responses and Herbivore Population Dynamics 2012 , 89-112		8
60	Evidence for Outbreaks from the Fossil Record of Insect Herbivory 2012 , 267-290		8
59	Integrated Pest Management (Dutbreaks Prevented, Delayed, or Facilitated? 2012, 371-394		8
58	Measuring the cost of plasticity: avoid multi-collinearity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2011 , 278, 2726-2727	4.4	8
57	Latitudinal Gradients1. <i>Ecology</i> , 2005 , 86, 2261-2262	4.6	8
56	Integrated metabolic strategy: A framework for predicting the evolution of carbon-water tradeoffs within plant clades. <i>Journal of Ecology</i> , 2019 , 107, 1633-1644	6	7
55	Advances in understanding the long-term population decline of monarch butterflies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8093-8095	11.5	7
54	Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum). <i>PeerJ</i> , 2016 , 4, e1886	3.1	7
53	Plant Defense by Latex: Ecological Genetics of Inducibility in the Milkweeds and a General Review of Mechanisms, Evolution, and Implications for Agriculture. <i>Journal of Chemical Ecology</i> , 2019 , 45, 1004-	10718	7
52	Reduction of oviposition time and enhanced larval feeding: two potential benefits of aggregative oviposition for the viburnum leaf beetle. <i>Ecological Entomology</i> , 2014 , 39, 125-132	2.1	6
51	Community and Evolutionary Ecology of Nectar1. <i>Ecology</i> , 2004 , 85, 1477-1478	4.6	6
50	Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. <i>Plant, Cell and Environment</i> , 2020 , 43, 2812-2825	8.4	6

(2021-2018)

49	What doesnEkill you makes you stronger: The burdens and benefits of toxin sequestration in a milkweed aphid. <i>Functional Ecology</i> , 2018 , 32, 1972-1981	5.6	6
48	Science-Policy-Practice Interfaces: Emergent knowledge and monarch butterfly conservation. <i>Environmental Policy and Governance</i> , 2017 , 27, 521-533	2.6	5
47	Life History Traits and Host Plant Use in Defoliators and Bark Beetles: Implications for Population Dynamics 2012 , 175-196		5
46	Immune Responses and Their Potential Role in Insect Outbreaks 2012 , 47-70		5
45	Why Omnivory?. <i>Ecology</i> , 2003 , 84, 2521-2521	4.6	5
44	The Metabolic Theory of Ecology1. <i>Ecology</i> , 2004 , 85, 1790-1791	4.6	5
43	Evolution of phenotypic plasticity: Genetic differentiation and additive genetic variation for induced plant defence in wild arugula Eruca sativa. <i>Journal of Evolutionary Biology</i> , 2020 , 33, 237-246	2.3	5
42	Fitness consequences of occasional outcrossing in a functionally asexual plant (Oenothera biennis). <i>Ecology</i> , 2018 , 99, 464-473	4.6	5
41	Attack and aggregation of a major squash pest: Parsing the role of plant chemistry and beetle pheromones across spatial scales. <i>Journal of Applied Ecology</i> , 2020 , 57, 1442-1451	5.8	4
40	Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii. <i>Basic and Applied Ecology</i> , 2014 , 15, 444-452	3.2	4
39	Genotypic diversity mitigates negative effects of density on plant performance: a field experiment and life cycle analysis of common evening primrose Oenothera biennis. <i>Journal of Ecology</i> , 2017 , 105, 726-735	6	4
38	Seasonal decline in plant defence is associated with relaxed offensive oviposition behaviour in the viburnum leaf beetle Pyrrhalta viburni. <i>Ecological Entomology</i> , 2014 , 39, 589-594	2.1	4
37	The Dynamical Effects of Interactions between Inducible Plant Resistance and Food Limitation during Insect Outbreaks 2012 , 30-46		4
36	Insect Invasions: Lessons from Biological Control of Weeds 2012 , 395-428		4
35	Underground Processes in Plant Communities1. <i>Ecology</i> , 2003 , 84, 2256-2257	4.6	3
34	Nectar, nodules and cheaters. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 123-124	10.9	3
33	Phenotypic Plasticity 2008 , 43-57		3
32	Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. <i>Trends in Plant Science</i> , 2021 , 26, 796-809	13.1	3

31	Evolution and seed dormancy shape plant genotypic structure through a successional cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
30	Observation, natural history, and an early post-Darwinian view of plant-animal interactions. <i>American Naturalist</i> , 2014 , 184, ii-iv	3.7	2
29	Natural Enemies and Insect Outbreaks in Agriculture: A Landscape Perspective 2012 , 355-370		2
28	Insect-Associated Microorganisms and Their Possible Role in Outbreaks 2012 , 155-174		2
27	Resistance to Transgenic Crops and Pest Outbreaks 2012 , 341-354		2
26	Optimal foraging and phenotypic plasticity in plants. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 305	10.9	2
25	Plant defense: signals in insect eggs. <i>Trends in Ecology and Evolution</i> , 2000 , 15, 357	10.9	2
24	Law of the unspecialized: broken?. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 426	10.9	2
23	The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. <i>Oecologia</i> , 2020 , 193, 619-630	2.9	2
22	The evolution of coevolution in the study of species interactions. <i>Evolution; International Journal of Organic Evolution</i> , 2021 , 75, 1594-1606	3.8	2
21	Microsatellites for Oenothera gayleana and O. hartwegii subsp. filifolia (Onagraceae), and their utility in section Calylophus. <i>Applications in Plant Sciences</i> , 2016 , 4, 1500107	2.3	2
20	Evidence for tissue-specific defense-offense interactions between milkweed and its community of specialized herbivores <i>Molecular Ecology</i> , 2022 ,	5.7	2
19	Toxicity of the spiny thick-foot Pachypodium. American Journal of Botany, 2018, 105, 677-686	2.7	1
18	Disasters by Design: Outbreaks along Urban Gradients 2012 , 311-340		1
17	Outbreaks and Ecosystem Services 2012 , 246-265		1
16	The Role of Ecological Stoichiometry in Outbreaks of Insect Herbivores 2012 , 71-88		1
15	Phytohormonal Ecology1. <i>Ecology</i> , 2004 , 85, 3-4	4.6	1
14	Empirically Motivated Ecological Theory1. <i>Ecology</i> , 2005 , 86, 3137-3138	4.6	1

LIST OF PUBLICATIONS

-	13	NOTEGypsy moth defoliation and N fertilization affect hybrid poplar regeneration following coppicing. <i>Canadian Journal of Forest Research</i> , 2002 , 32, 1491-1495	1.9	1
-	12	Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores. <i>Journal of Chemical Ecology</i> , 2020 , 46, 1131-1143	2.7	1
-	11	Trade-offs and synergies in management of two co-occurring specialist squash pests. <i>Journal of Pest Science</i> ,1	5.5	1
-	10	Genetic Variation in Parental Effects Contributes to the Evolutionary Potential of Prey Responses to Predation Risk. <i>American Naturalist</i> , 2021 , 197, 164-175	3.7	1
٥	9	The community ecology of live long and prosper. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 62	10.9	O
{	8	Induced resistance mitigates the effect of plant neighbors on susceptibility to herbivores. <i>Ecosphere</i> , 2021 , 12, e03334	3.1	O
7	7	A private channel of nitrogen alleviates interspecific competition for an annual legume. <i>Ecology</i> , 2021 , 102, e03449	4.6	O
(6	Evolution of shade tolerance is associated with attenuation of shade avoidance and reduced phenotypic plasticity in North American milkweeds. <i>American Journal of Botany</i> , 2021 , 108, 1705-1715	2.7	Ο
	5	Host specificity and variation in oviposition behaviour of milkweed stem weevils and implications for species divergence. <i>Ecological Entomology</i> , 2020 , 45, 1121-1133	2.1	
4	4	Agrobacterium tumefaciens-Mediated Transformation of Three Milkweed Species (Asclepias hallii, A. syriaca, and A. tuberosa: Apocynaceae). <i>Current Protocols in Plant Biology</i> , 2020 , 5, e20105	2.8	
3	3	Covariation and composition of arthropod species across plant genotypes of evening primrose (Oenothera biennis). <i>Oikos</i> , 2007 , 116, 941-956	4	
2	2	Corruption of Journal Impact Factors. Bulletin of the Ecological Society of America, 2006, 87, 45-45	0.7	
	1	Naturalist. <i>Trends in Ecology and Evolution</i> , 1995 , 10, 218-219	10.9	