Anurag A Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226424/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Phenotypic Plasticity in the Interactions and Evolution of Species. Science, 2001, 294, 321-326.	12.6	1,339
2	The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 1999, 14, 179-185.	8.7	1,331
3	Transgenerational induction of defences in animals and plants. Nature, 1999, 401, 60-63.	27.8	732
4	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	6.4	649
5	Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 2012, 17, 293-302.	8.8	634
6	A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. Journal of Chemical Ecology, 2003, 29, 1403-1415.	1.8	585
7	PLANT DEFENSE SYNDROMES. Ecology, 2006, 87, S132-S149.	3.2	574
8	Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 503-511.	2.6	546
9	Induced Responses to Herbivory and Increased Plant Performance. Science, 1998, 279, 1201-1202.	12.6	530
10	Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18054-18061.	7.1	518
11	Current trends in the evolutionary ecology of plant defence. Functional Ecology, 2011, 25, 420-432.	3.6	437
12	Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. Annual Review of Plant Biology, 2017, 68, 513-534.	18.7	428
13	Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 2007, 5, 145-152.	4.0	401
14	Herbivory in the Previous Generation Primes Plants for Enhanced Insect Resistance Â. Plant Physiology, 2012, 158, 854-863.	4.8	394
15	Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science, 2012, 338, 113-116.	12.6	389
16	Macroevolution of plant defense strategies. Trends in Ecology and Evolution, 2007, 22, 103-109.	8.7	356
17	Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytologist, 2012, 194, 28-45.	7.3	345
18	ENEMY RELEASE? AN EXPERIMENT WITH CONGENERIC PLANT PAIRS AND DIVERSE ABOVE- AND BELOWGROUND ENEMIES. Ecology, 2005, 86, 2979-2989.	3.2	344

#	Article	IF	CITATIONS
19	Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 311-331.	8.3	332
20	Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology and Evolution, 2012, 27, 618-626.	8.7	329
21	INDUCED RESPONSES TO HERBIVORY IN WILD RADISH: EFFECTS ON SEVERAL HERBIVORES AND PLANT FITNESS. Ecology, 1999, 80, 1713-1723.	3.2	302
22	PLANT GENOTYPE AND ENVIRONMENT INTERACT TO SHAPE A DIVERSE ARTHROPOD COMMUNITY ON EVENING PRIMROSE (OENOTHERA BIENNIS). Ecology, 2005, 86, 874-885.	3.2	295
23	Herbivore Offense. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 641-664.	6.7	291
24	Mechanisms and evolution of plant resistance to aphids. Nature Plants, 2016, 2, 15206.	9.3	288
25	COSTS OF INDUCED RESPONSES AND TOLERANCE TO HERBIVORY IN MALE AND FEMALE FITNESS COMPONENTS OF WILD RADISH. Evolution; International Journal of Organic Evolution, 1999, 53, 1093-1104.	2.3	287
26	Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecology Letters, 2003, 6, 712-715.	6.4	282
27	Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecology Letters, 2005, 9, 051012084514001.	6.4	264
28	Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13040-13045.	7.1	257
29	Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos, 2000, 89, 493-500.	2.7	255
30	Community heterogeneity and the evolution of interactions between plants and insect herbivores. Quarterly Review of Biology, 2006, 81, 349-376.	0.1	240
31	Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends in Plant Science, 2000, 5, 309-313.	8.8	237
32	Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution, 1999, 14, 443-447.	8.7	226
33	HOST-RANGE EVOLUTION: ADAPTATION AND TRADE-OFFS IN FITNESS OF MITES ON ALTERNATIVE HOSTS. Ecology, 2000, 81, 500-508.	3.2	211
34	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	3.2	208
35	Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 2011, 14, 476-483.	6.4	203
36	THE BENEFITS OF INDUCED DEFENSES AGAINST HERBIVORES. Ecology, 1997, 78, 1351-1355.	3.2	184

#	ARTICLE	IF	CITATIONS
37	COMMUNITY-WIDE IMPACTS OF HERBIVORE-INDUCED PLANT RESPONSES IN MILKWEED (ASCLEPIAS) Tj ETQq1	1 0.78431 3.2	14 rgBT /Ove
38	ECOLOGICAL GENETICS OF AN INDUCED PLANT DEFENSE AGAINST HERBIVORES: ADDITIVE GENETIC VARIANCE AND COSTS OF PHENOTYPIC PLASTICITY. Evolution; International Journal of Organic Evolution, 2002, 56, 2206-2213.	2.3	182
39	Transgenerational Consequences of Plant Responses to Herbivory: An Adaptive Maternal Effect?. American Naturalist, 2001, 157, 555-569.	2.1	175
40	A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology, 2011, 92, 915-923.	3.2	174
41	Phylogenetic escalation and decline of plant defense strategies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10057-10060.	7.1	167
42	HERBIVORY AND MATERNAL EFFECTS: MECHANISMS AND CONSEQUENCES OF TRANSGENERATIONAL INDUCED PLANT RESISTANCE. Ecology, 2002, 83, 3408-3415.	3.2	155
43	A scaleâ€dependent framework for tradeâ€offs, syndromes, and specialization in organismal biology. Ecology, 2020, 101, e02924.	3.2	155
44	Evolution of plant resistance and tolerance to frost damage. Ecology Letters, 2004, 7, 1199-1208.	6.4	154
45	Costs of Induced Responses and Tolerance to Herbivory in Male and Female Fitness Components of Wild Radish. Evolution; International Journal of Organic Evolution, 1999, 53, 1093.	2.3	152
46	RESISTANCE AND SUSCEPTIBILITY OF MILKWEED: COMPETITION, ROOT HERBIVORY, AND PLANT GENETIC VARIATION. Ecology, 2004, 85, 2118-2133.	3.2	151
47	On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecology Letters, 2015, 18, 985-991.	6.4	151
48	Dynamic Anti-Herbivore Defense in Ant-Plants: The Role of Induced Responses. Oikos, 1998, 83, 227.	2.7	150
49	Salicylateâ€mediated interactions between pathogens and herbivores. Ecology, 2010, 91, 1075-1082.	3.2	150
50	Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos, 2016, 125, 1081-1091.	2.7	150
51	Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Current Opinion in Plant Biology, 2000, 3, 329-335.	7.1	149
52	Adaptive geographical clines in the growth and defense of a native plant. Ecological Monographs, 2012, 82, 149-168.	5.4	149
53	BENEFITS AND COSTS OF INDUCED PLANT DEFENSE FORLEPIDIUM VIRGINICUM(BRASSICACEAE). Ecology, 2000, 81, 1804-1813.	3.2	142
54	Plants talk, but are they deaf?. Trends in Plant Science, 2003, 8, 403-405.	8.8	141

#	Article	IF	CITATIONS
55	Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18067-18072.	7.1	135
56	Specificity of induced plant responses to specialist herbivores of the common milkweedAsclepias syriaca. Oikos, 2004, 104, 401-409.	2.7	134
57	In Defense of Roots: A Research Agenda for Studying Plant Resistance to Belowground Herbivory. Plant Physiology, 2008, 146, 875-880.	4.8	134
58	INFLUENCE OF PREY AVAILABILITY AND INDUCED HOST-PLANT RESISTANCE ON OMNIVORY BY WESTERN FLOWER THRIPS. Ecology, 1999, 80, 518-523.	3.2	131
59	Defense mutualisms enhance plant diversification. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16442-16447.	7.1	129
60	What is Phenotypic Plasticity and Why is it Important?. , 2009, , .		128
61	The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtailBattus philenor. Journal of Animal Ecology, 2001, 70, 997-1005.	2.8	125
62	Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Current Opinion in Plant Biology, 2009, 12, 473-478.	7.1	123
63	How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Current Opinion in Insect Science, 2016, 14, 17-24.	4.4	123
64	Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature, 2019, 574, 409-412.	27.8	120
65	Domatia mediate plantarthropod mutualism. Nature, 1997, 387, 562-563.	27.8	119
66	Phylogenetic ecology of leaf surface traits in the milkweeds (<i>Asclepias</i> spp.): chemistry, ecophysiology, and insect behavior. New Phytologist, 2009, 183, 848-867.	7.3	116
67	Direct and indirect root defences of milkweed (<i>Asclepias syriaca</i>): trophic cascades, tradeâ€offs and novel methods for studying subterranean herbivory. Journal of Ecology, 2011, 99, 16-25.	4.0	116
68	Evolutionary Trade-Offs in Plants Mediate the Strength of Trophic Cascades. Science, 2010, 327, 1642-1644.	12.6	114
69	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2285-2304.	1.8	113
70	Plant Defense and Density Dependence in the Population Growth of Herbivores. American Naturalist, 2004, 164, 113-120.	2.1	109
71	Heritability, covariation and natural selection on 24 traits of common evening primrose (<i>Oenothera biennis</i>) from a field experiment. Journal of Evolutionary Biology, 2009, 22, 1295-1307.	1.7	108
72	PHYLOGENETIC TRENDS IN PHENOLIC METABOLISM OF MILKWEEDS (<i>ASCLEPIAS</i>): EVIDENCE FOR ESCALATION. Evolution; International Journal of Organic Evolution, 2009, 63, 663-673.	2.3	107

#	Article	IF	CITATIONS
73	Plant Genotype Shapes Antâ€Aphid Interactions: Implications for Community Structure and Indirect Plant Defense. American Naturalist, 2008, 171, E195-E205.	2.1	105
74	LEAF DAMAGE AND ASSOCIATED CUES INDUCE AGGRESSIVE ANT RECRUITMENT IN A NEOTROPICAL ANT-PLANT. Ecology, 1998, 79, 2100-2112.	3.2	104
75	An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecology Letters, 2002, 5, 377-385.	6.4	102
76	Asymmetry of plantâ€mediated interactions between specialist aphids and caterpillars on two milkweeds. Functional Ecology, 2014, 28, 1404-1412.	3.6	98
77	How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos, 2000, 89, 70-80.	2.7	94
78	Induction of Preference and Performance after Acclimation to Novel Hosts in a Phytophagous Spider Mite: Adaptive Plasticity?. American Naturalist, 2002, 159, 553-565.	2.1	94
79	Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151865.	2.6	94
80	Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends in Ecology and Evolution, 2012, 27, 394-403.	8.7	90
81	Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecologica, 1998, 19, 331-337.	1.1	85
82	What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by omnivores. Journal of Animal Ecology, 2000, 69, 525-535.	2.8	85
83	Future directions in the study of induced plant responses to herbivory. Entomologia Experimentalis Et Applicata, 2005, 115, 97-105.	1.4	85
84	Induced Responses to Herbivory and Jasmonate in Three Milkweed Species. Journal of Chemical Ecology, 2009, 35, 1326-1334.	1.8	84
85	The Monarch Butterfly through Time and Space: The Social Construction of an Icon. BioScience, 2015, 65, 612-622.	4.9	84
86	The raison d'être of chemical ecology. Ecology, 2015, 96, 617-630.	3.2	83
87	Evolutionary history predicts plant defense against an invasive pest. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7070-7074.	7.1	79
88	Specificity and tradeâ€offs in the induced plant defence of common milkweed <i>Asclepias syriaca</i> to two lepidopteran herbivores. Journal of Ecology, 2010, 98, 1014-1022.	4.0	77
89	A Field Experiment Demonstrating Plant Life-History Evolution and Its Eco-Evolutionary Feedback to Seed Predator Populations. American Naturalist, 2013, 181, S35-S45.	2.1	76
90	Growth–defense tradeoffs for two major antiâ€herbivore traits of the common milkweed <i>Asclepias syriaca</i> . Oikos, 2015, 124, 1404-1415.	2.7	75

#	Article	IF	CITATIONS
91	Parental effects in Pieris rapae in response to variation in food quality: adaptive plasticity across generations?. Ecological Entomology, 2003, 28, 211-218.	2.2	74
92	Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis sativus. Functional Ecology, 2005, 19, 1025-1031.	3.6	74
93	Evolution of Specialization: A Phylogenetic Study of Host Range in the Red Milkweed Beetle (<i>Tetraopes tetraophthalmus</i>). American Naturalist, 2011, 177, 728-737.	2.1	74
94	Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life. American Naturalist, 2017, 190, S1-S12.	2.1	74
95	Mechanisms behind the monarch's decline. Science, 2018, 360, 1294-1296.	12.6	72
96	Cardenolides, induced responses, and interactions between above―and belowground herbivores of milkweed (<i>Asclepias</i> spp.). Ecology, 2009, 90, 2393-2404.	3.2	69
97	COMMUNITY GENETICS: NEW INSIGHTS INTO COMMUNITY ECOLOGY BY INTEGRATING POPULATION GENETICS1. Ecology, 2003, 84, 543-544.	3.2	68
98	Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweedâ€feeding aphids. Oikos, 2008, 117, 450-458.	2.7	67
99	Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. New Phytologist, 2015, 206, 796-806.	7.3	67
100	Population Variation, Environmental Gradients, and the Evolutionary Ecology of Plant Defense against Herbivory. American Naturalist, 2019, 193, 20-34.	2.1	67
101	Specificity of constitutive and induced resistance: pigment glands influence mites and caterpillars on cotton plants. Entomologia Experimentalis Et Applicata, 2000, 96, 39-49.	1.4	64
102	Evolution of latex and its constituent defensive chemistry in milkweeds (<i>Asclepias</i>): a phylogenetic test of plant defense escalation. Entomologia Experimentalis Et Applicata, 2008, 128, 126-138.	1.4	64
103	Learning in Insect Pollinators and Herbivores. Annual Review of Entomology, 2017, 62, 53-71.	11.8	63
104	Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of <i><scp>A</scp>sclepias</i> . Functional Ecology, 2012, 26, 1100-1110.	3.6	62
105	Plant–herbivore coevolution and plant speciation. Ecology, 2019, 100, e02704.	3.2	62
106	Phenotypic plasticity to light competition and herbivory in <i>Chenopodium album</i> (Chenopodiaceae). American Journal of Botany, 2005, 92, 21-26.	1.7	61
107	INTEGRATING PHYLOGENIES INTO COMMUNITY ECOLOGY1. Ecology, 2006, 87, S1-S2.	3.2	61
108	Ants defend aphids against lethal disease. Biology Letters, 2010, 6, 205-208.	2.3	61

7

#	Article	IF	CITATIONS
109	PARALLEL CHANGES IN HOST RESISTANCE TO VIRAL INFECTION DURING 45,000 GENERATIONS OF RELAXED SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	60
110	INTENSE DISTURBANCE ENHANCES PLANT SUSCEPTIBILITY TO HERBIVORY: NATURAL AND EXPERIMENTAL EVIDENCE. Ecology, 2003, 84, 890-897.	3.2	57
111	Herbivory enhances positive effects of plant genotypic diversity. Ecology Letters, 2010, 13, 553-563.	6.4	57
112	Corruption of journal Impact Factors. Trends in Ecology and Evolution, 2005, 20, 157-157.	8.7	55
113	COEXISTENCE OF THREE SPECIALIST APHIDS ON COMMON MILKWEED, <i>ASCLEPIAS SYRIACA</i> . Ecology, 2008, 89, 2187-2196.	3.2	55
114	Attenuation of the Jasmonate Burst, Plant Defensive Traits, and Resistance to Specialist Monarch Caterpillars on Shaded Common Milkweed (Asclepias syriaca). Journal of Chemical Ecology, 2012, 38, 893-901.	1.8	55
115	Induced responses to herbivory in the Neotropical ant-plant association between Azteca ants and Cecropia trees: response of ants to potential inducing cues. Behavioral Ecology and Sociobiology, 1999, 45, 47-54.	1.4	53
116	Induced Plant Resistance and Susceptibility to Late-Season Herbivores of Wild Radish. Annals of the Entomological Society of America, 2001, 94, 71-75.	2.5	53
117	Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (<i>Asclepias incarnata</i>). Journal of Ecology, 2008, 96, 536-542.	4.0	53
118	Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed. Journal of Ecology, 2003, 91, 1049-1059.	4.0	52
119	Covariation and composition of arthropod species across plant genotypes of evening primrose, <i>Oenothera biennis</i> . Oikos, 2007, 116, 941-956.	2.7	51
120	Do leaf domatia mediate a plant-mite mutualism? An experimental test of the effects on predators and herbivores. Ecological Entomology, 1997, 22, 371-376.	2.2	50
121	Evolution of Plant Growth and Defense in a Continental Introduction. American Naturalist, 2015, 186, E1-E15.	2.1	49
122	Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology, 2004, 29, 521-526.	2.2	48
123	Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks. PLoS ONE, 2014, 9, e91155.	2.5	40
124	Multidrug transporters and organic anion transporting polypeptides protect insects against the toxic effects of cardenolides. Insect Biochemistry and Molecular Biology, 2017, 81, 51-61.	2.7	40
125	Phylogenetic and Experimental Tests of Interactions among Mutualistic Plant Defense Traits in Viburnum (Adoxaceae). American Naturalist, 2012, 180, 450-463.	2.1	39
126	Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed <i>Asclepias syriaca</i> . Functional Ecology, 2016, 30, 547-556.	3.6	39

#	Article	IF	CITATIONS
127	Relative Selectivity of Plant Cardenolides for Na+/K+-ATPases From the Monarch Butterfly and Non-resistant Insects. Frontiers in Plant Science, 2018, 9, 1424.	3.6	39
128	Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1857-1861.	2.6	38
129	First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 3151-3156.	1.5	38
130	Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
131	Evolutionary history and species interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18043-18044.	7.1	35
132	Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. Journal of Chemical Ecology, 2019, 45, 50-60.	1.8	35
133	Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny. Journal of Chemical Ecology, 2019, 45, 264-277.	1.8	34
134	Polymorphic buttonwood: effects of disturbance on resistance to herbivores in green and silver morphs of a Bahamian shrub. American Journal of Botany, 2004, 91, 1990-1997.	1.7	33
135	Interactive Effects of Genotype, Environment, and Ontogeny on Resistance of Cucumber (Cucumis) Tj ETQq1	1 0.784314 1.8	rgBT /Overloc
136	Specificity of Herbivore-Induced Hormonal Signaling and Defensive Traits in Five Closely Related Milkweeds (Asclepias spp.). Journal of Chemical Ecology, 2014, 40, 717-729.	1.8	33
137	Density dependent population growth of the two-spotted spider mite, Tetranychus urticae , on the host plant Leonurus cardiaca. Oikos, 2003, 103, 559-565.	2.7	32
138	The ecological play of predator–prey dynamics in an evolutionary theatre. Trends in Ecology and Evolution, 2003, 18, 549-551.	8.7	32
139	Rapid Herbivore-Induced Changes in Mountain Birch Phenolics and Nutritive Compounds and Their Effects on Performance of the Major Defoliator, Epirrita autumnata. Journal of Chemical Ecology, 2004, 30, 303-321.	1.8	32
140	Benefits and Costs of Induced Plant Defense for Lepidium virginicum (Brassicaceae). Ecology, 2000, 81, 1804.	3.2	30
141	Ant–aphid interactions on <i>Asclepias syriaca</i> are mediated by plant genotype and caterpillar damage. Oikos, 2012, 121, 1905-1913.	2.7	30
142	Beyond preference and performance: host plant selection by monarch butterflies, Danaus plexippus. Oikos, 2019, 128, 1092-1102.	2.7	29
143	Induced Responses to Herbivory in Wild Radish: Effects on Several Herbivores and Plant Fitness. Ecology, 1999, 80, 1713.	3.2	29
144	Chinese mantids gut toxic monarch caterpillars: avoidance of prey defence?. Ecological Entomology, 2013, 38, 76-82.	2.2	28

#	Article	IF	CITATIONS
145	Exotic plants contribute positively to biodiversity functions but reduce native seed production and arthropod richness. Ecology, 2014, 95, 1642-1650.	3.2	28
146	Aboveâ€ground herbivory by red milkweed beetles facilitates above―and belowâ€ground conspecific insects and reduces fruit production in common milkweed. Journal of Ecology, 2014, 102, 1038-1047.	4.0	27
147	Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. Trends in Plant Science, 2021, 26, 796-809.	8.8	27
148	Tradeâ€offs constrain the evolution of an inducible defense within but not between plant species. Ecology, 2019, 100, e02857.	3.2	26
149	Landscape Ecology Comes of Age1. Ecology, 2005, 86, 1965-1966.	3.2	25
150	Synthesizing specificity: multiple approaches to understanding the attack and defense of plants. Trends in Plant Science, 2012, 17, 239-242.	8.8	25
151	Tests of the coupled expression of latex and cardenolide plant defense in common milkweed (<i>Asclepias syriaca</i>). Ecosphere, 2014, 5, 1-11.	2.2	24
152	Communication between plants: this time it's real. Trends in Ecology and Evolution, 2000, 15, 446.	8.7	23
153	New Synthesis—Trade-offs in Chemical Ecology. Journal of Chemical Ecology, 2011, 37, 230-231.	1.8	23
154	Plant chemical defense indirectly mediates aphid performance via interactions with tending ants. Ecology, 2017, 98, 601-607.	3.2	23
155	ECOLOGICAL GENETICS OF AN INDUCED PLANT DEFENSE AGAINST HERBIVORES: ADDITIVE GENETIC VARIANCE AND COSTS OF PHENOTYPIC PLASTICITY. Evolution; International Journal of Organic Evolution, 2002, 56, 2206.	2.3	22
156	Evolutionary Potential of Root Chemical Defense: Genetic Correlations with Shoot Chemistry and Plant Growth. Journal of Chemical Ecology, 2012, 38, 992-995.	1.8	22
157	Specific impacts of two root herbivores and soil nutrients on plant performance and insect–insect interactions. Oikos, 2013, 122, 1746-1756.	2.7	22
158	Consequences of toxic secondary compounds in nectar for mutualistÂbees and antagonist butterflies. Ecology, 2016, 97, 2570-2579.	3.2	22
159	The evolution of coevolution in the study of species interactions. Evolution; International Journal of Organic Evolution, 2021, 75, 1594-1606.	2.3	22
160	Host-Range Evolution: Adaptation and Trade-Offs in Fitness of Mites on Alternative Hosts. Ecology, 2000, 81, 500.	3.2	22
161	PERMANENT GENETIC RESOURCES: Isolation and characterization of polymorphic microsatellite loci in common evening primrose (<i>Oenothera biennis</i>). Molecular Ecology Resources, 2008, 8, 434-436.	4.8	21
162	Linking Individual-Scale Trait Plasticity to Community Dynamics1. Ecology, 2003, 84, 1081-1082.	3.2	20

#	Article	IF	CITATIONS
163	Love thy neighbor? reciprocal impacts between plant community structure and insect herbivory in coâ€occurring Asteraceae. Ecology, 2014, 95, 2904-2914.	3.2	19
164	Four more reasons to be skeptical of open-access publishing. Trends in Plant Science, 2014, 19, 133.	8.8	19
165	The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes. Ecology, 2015, 96, 2632-2642.	3.2	19
166	Advances in understanding the long-term population decline of monarch butterflies. Proceedings of the United States of America, 2019, 116, 8093-8095.	7.1	19
167	Ant mutualists alter the composition and attack rate of the parasitoid community for the gall wasp Disholcaspis eldoradensis (Cynipidae). Ecological Entomology, 2004, 29, 692-696.	2.2	18
168	Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (<i>Asclepias</i> spp.). New Phytologist, 2016, 209, 1230-1239.	7.3	18
169	Mechanisms of constraints: the contributions of selection and genetic variance to the maintenance of cotyledon number in wild radish. Journal of Evolutionary Biology, 2005, 18, 238-242.	1.7	17
170	Systematic survey of discrepancy rates in an international teleradiology service. Emergency Radiology, 2011, 18, 23-29.	1.8	17
171	Functional evidence supports adaptive plant chemical defense along a geographical cline. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
172	Consequences of thrips-infested plants for attraction of conspecifics and parasitoids. Ecological Entomology, 2000, 25, 493-496.	2.2	16
173	Benefits and Constraints on Plant Defense against Herbivores: Spines Influence the Legitimate and Illegitimate Flower Visitors of Yellow Star Thistle, Centaurea solstitialis L. (Asteraceae). Southwestern Naturalist, 2000, 45, 1.	0.1	16
174	The Ecological Consequences of Insect Outbreaks. , 2012, , 197-218.		16
175	A Genetically-Based Latitudinal Cline in the Emission of Herbivore-Induced Plant Volatile Organic Compounds. Journal of Chemical Ecology, 2013, 39, 1101-1111.	1.8	16
176	Tradeâ€offs and tritrophic consequences of host shifts in specialized root herbivores. Functional Ecology, 2017, 31, 153-160.	3.6	16
177	What doesn't kill you makes you stronger: The burdens and benefits of toxin sequestration in a milkweed aphid. Functional Ecology, 2018, 32, 1972-1981.	3.6	16
178	Plant Defense by Latex: Ecological Genetics of Inducibility in the Milkweeds and a General Review of Mechanisms, Evolution, and Implications for Agriculture. Journal of Chemical Ecology, 2019, 45, 1004-1018.	1.8	16
179	Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions. Current Opinion in Insect Science, 2019, 32, 61-67.	4.4	16
180	Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. Plant, Cell and Environment, 2020, 43, 2812-2825.	5.7	16

#	Article	IF	CITATIONS
181	Insect herbivory and plant adaptation in an early successional community*. Evolution; International Journal of Organic Evolution, 2018, 72, 1020-1033.	2.3	15
182	Historically browsed jewelweed populations exhibit greater tolerance to deer herbivory than historically protected populations. Journal of Ecology, 2015, 103, 243-249.	4.0	14
183	Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo. Journal of Chemical Ecology, 2019, 45, 313-325.	1.8	14
184	The Statistics of Rarity1. Ecology, 2005, 86, 1079-1080.	3.2	13
185	Integrated metabolic strategy: A framework for predicting the evolution of carbonâ€water tradeoffs within plant clades. Journal of Ecology, 2019, 107, 1633-1644.	4.0	13
186	Evolution of phenotypic plasticity: Genetic differentiation and additive genetic variation for induced plant defence in wild arugula <i>Eruca sativa</i> . Journal of Evolutionary Biology, 2020, 33, 237-246.	1.7	13
187	Phylogeny of the plant genus <i>Pachypodium</i> (Apocynaceae). PeerJ, 2013, 1, e70.	2.0	13
188	Oviposition strategy as a means of local adaptation to plant defence in native and invasive populations of the viburnum leaf beetle. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 952-958.	2.6	12
189	Evidence for tissueâ€specific defenceâ€offence interactions between milkweed and its community of specialized herbivores. Molecular Ecology, 2022, 31, 3254-3265.	3.9	11
190	Do plant defenses predict damage by an invasive herbivore? A comparative study of the viburnum leaf beetle. , 2014, 24, 759-769.		10
191	Fitness consequences of occasional outcrossing in a functionally asexual plant (<i>Oenothera) Tj ETQq1 1 0.784</i>	314 rgBT	/Oyerlock 10
192	Scienceâ€Policyâ€Practice Interfaces: Emergent knowledge and monarch butterfly conservation. Environmental Policy and Governance, 2017, 27, 521-533.	3.7	9
193	Latitudinal Gradients1. Ecology, 2005, 86, 2261-2262.	3.2	8
194	Measuring the cost of plasticity: avoid multi-collinearity. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2726-2727.	2.6	8
195	Reduction of oviposition time and enhanced larval feeding: two potential benefits of aggregative oviposition for the viburnum leaf beetle. Ecological Entomology, 2014, 39, 125-132.	2.2	8
196	The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. Oecologia, 2020, 193, 619-630.	2.0	8
197	Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores. Journal of Chemical Ecology, 2020, 46, 1131-1143.	1.8	8
198	Attack and aggregation of a major squash pest: Parsing the role of plant chemistry and beetle pheromones across spatial scales. Journal of Applied Ecology, 2020, 57, 1442-1451.	4.0	8

#	Article	IF	CITATIONS
199	Community and Evolutionary Ecology of Nectar1. Ecology, 2004, 85, 1477-1478.	3.2	7
200	Spillover of a biological control agent (<i>Chrysolina quadrigemina</i>) onto native St. Johnswort (<i>Hypericum punctatum</i>). PeerJ, 2016, 4, e1886.	2.0	7
201	The Metabolic Theory of Ecology1. Ecology, 2004, 85, 1790-1791.	3.2	6
202	Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii. Basic and Applied Ecology, 2014, 15, 444-452.	2.7	6
203	Genotypic diversity mitigates negative effects of density on plant performance: a field experiment and life cycle analysis of common evening primrose <i><scp>O</scp>enothera biennis</i> . Journal of Ecology, 2017, 105, 726-735.	4.0	6
204	Trade-offs and synergies in management of two co-occurring specialist squash pests. Journal of Pest Science, 2022, 95, 327-338.	3.7	6
205	Evolution and seed dormancy shape plant genotypic structure through a successional cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
206	Experimental insect suppression causes loss of induced, but not constitutive, resistance in <i>Solanum carolinense</i> . Ecology, 0, , .	3.2	6
207	Why Omnivory?. Ecology, 2003, 84, 2521-2521.	3.2	5
208	Seasonal decline in plant defence is associated with relaxed offensive oviposition behaviour in the viburnum leaf beetle <i>Pyrrhalta viburni</i> . Ecological Entomology, 2014, 39, 589-594.	2.2	4
209	Microsatellites for <i>Oenothera gayleana</i> and <i>O. hartwegii</i> subsp. <i>filifolia</i> (Onagraceae), and their utility in section <i>Calylophus</i> . Applications in Plant Sciences, 2016, 4, 1500107.	2.1	4
210	Induced resistance mitigates the effect of plant neighbors on susceptibility to herbivores. Ecosphere, 2021, 12, e03334.	2.2	4
211	Nectar, nodules and cheaters. Trends in Ecology and Evolution, 2001, 16, 123-124.	8.7	3
212	NOTEGypsy moth defoliation and N fertilization affect hybrid poplar regeneration following coppicing. Canadian Journal of Forest Research, 2002, 32, 1491-1495.	1.7	3
213	Optimal foraging and phenotypic plasticity in plants. Trends in Ecology and Evolution, 2002, 17, 305.	8.7	3
214	Underground Processes in Plant Communities1. Ecology, 2003, 84, 2256-2257.	3.2	3
215	Empirically Motivated Ecological Theory1. Ecology, 2005, 86, 3137-3138.	3.2	3
216	Genetic Variation in Parental Effects Contributes to the Evolutionary Potential of Prey Responses to Predation Risk. American Naturalist, 2021, 197, 164-175.	2.1	3

#	Article	IF	CITATIONS
217	A private channel of nitrogen alleviates interspecific competition for an annual legume. Ecology, 2021, 102, e03449.	3.2	3
218	Phenotypic Plasticity. , 2008, , 43-57.		3
219	Plant defense: signals in insect eggs. Trends in Ecology and Evolution, 2000, 15, 357.	8.7	2
220	Law of the unspecialized: broken?. Trends in Ecology and Evolution, 2001, 16, 426.	8.7	2
221	Phytohormonal Ecology1. Ecology, 2004, 85, 3-4.	3.2	2
222	Observation, Natural History, and an Early Post-Darwinian View of Plant-Animal Interactions. American Naturalist, 2014, 184, ii-iv.	2.1	2
223	Toxicity of the spiny thickâ€foot Pachypodium. American Journal of Botany, 2018, 105, 677-686.	1.7	2
224	Evolution of shade tolerance is associated with attenuation of shade avoidance and reduced phenotypic plasticity in North American milkweeds. American Journal of Botany, 2021, 108, 1705-1715.	1.7	2
225	The community ecology of live long and prosper. Trends in Ecology and Evolution, 2002, 17, 62.	8.7	1
226	Interview with Anurag A. Agrawal. Trends in Plant Science, 2012, 17, 243.	8.8	1
227	Host specificity and variation in oviposition behaviour of milkweed stem weevils and implications for species divergence. Ecological Entomology, 2020, 45, 1121-1133.	2.2	1
228	Clonal versus non-clonal milkweeds (<i>Asclepias</i> spp.) respond differently to stem damage, affecting oviposition by monarch butterflies. PeerJ, 2020, 8, e10296.	2.0	1
229	Naturalist. Trends in Ecology and Evolution, 1995, 10, 218-219.	8.7	0
230	Selection Studies in Ecology: Concepts, Methods, and Directions1. Ecology, 2003, 84, 1649-1649.	3.2	0
231	Corruption of Journal Impact Factors. Bulletin of the Ecological Society of America, 2006, 87, 45-45.	0.2	0
232	Covariation and composition of arthropod species across plant genotypes of evening primrose (Oenothera biennis). Oikos, 2007, 116, 941-956.	2.7	0
233	Agrobacterium tumefaciens –Mediated Transformation of Three Milkweed Species (Asclepias hallii , A.) Tj ETQ	q1_1_0.78 	4314 rgBT /O
234	Ecology of <i>Asclepias brachystephana</i> : a plant for roadside and right-of-way management. Native Plants Journal, 2021, 22, 256-267.	0.2	0