Ribana Roscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226178/publications.pdf

Version: 2024-02-01

623188 525886 1,248 55 14 27 citations g-index h-index papers 64 64 64 1444 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Long-term drought monitoring of the Zayandehrud River basin (central Iran) using hydroclimatological models and satellite observations. Journal of Applied Remote Sensing, 2022, 16, .	0.6	1
2	Explainable Machine Learning Reveals Capabilities, Redundancy, and Limitations of a Geospatial Air Quality Benchmark Dataset. Machine Learning and Knowledge Extraction, 2022, 4, 150-171.	3.2	8
3	Behind the Leaves: Estimation of Occluded Grapevine Berries With Conditional Generative Adversarial Networks. Frontiers in Artificial Intelligence, 2022, 5, 830026.	2.0	16
4	Image-based analysis of yield parameters in viticulture. Biosystems Engineering, 2022, 218, 94-109.	1.9	4
5	Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties. Geoscientific Model Development, 2022, 15, 4331-4354.	1.3	12
6	Detection of Anomalous Grapevine Berries Using Variational Autoencoders. Frontiers in Plant Science, 2022, 13, .	1.7	2
7	Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision. GigaScience, 2022, $11,\ldots$	3.3	11
8	Artificial and beneficial – Exploiting artificial images for aerial vehicle detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 158-170.	4.9	10
9	AQ-Bench: a benchmark dataset for machine learning on global air quality metrics. Earth System Science Data, 2021, 13, 3013-3033.	3.7	12
10	Toward a Collective Agenda on Al for Earth Science Data Analysis. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 88-104.	4.9	35
11	Temporal prediction and evaluation of Brassica growth in the field using conditional generative adversarial networks. Computers and Electronics in Agriculture, 2021, 190, 106415.	3.7	18
12	ArtifiVe-Potsdam: A Benchmark for Learning with Artificial Objects for Improved Aerial Vehicle Detection., 2021,,.		2
13	Maneuver-based Trajectory Prediction for Self-driving Cars Using Spatio-temporal Convolutional Networks. , 2021, , .		17
14	Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 2020, 8, 42200-42216.	2.6	466
15	Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 73-83.	4.9	79
16	Automatic Differentiation of Damaged and Unharmed Grapes Using RGB Images and Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 347-359.	1.0	1
17	Detection of Single Grapevine Berries in Images Using Fully Convolutional Neural Networks. , 2019, , .		26
18	Detection of Anomalous Grapevine Berries Using All-Convolutional Autoencoders. , 2019, , .		3

#	Article	IF	Citations
19	Hyperspectral Plant Disease Forecasting Using Generative Adversarial Networks., 2019,,.		20
20	Ocean Eddy Identification and Tracking Using Neural Networks., 2018,,.		37
21	Foreword to the Special Issue on Machine Learning for Geospatial Data Analysis. ISPRS International Journal of Geo-Information, 2018, 7, 147.	1.4	3
22	Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-pixel Quantification. Photogrammetric Engineering and Remote Sensing, 2018, 84, 279-286.	0.3	3
23	Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 1938-1948.	2.3	19
24	STAR: Spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields. Remote Sensing of Environment, 2017, 201, 148-164.	4.6	29
25	Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 244-256.	1.4	16
26	Sparse representation-based archetypal graphs for spectral clustering. , 2017, , .		2
27	Discriminative archetypal self-taught learning for multispectral landcover classification. , 2016, , .		1
28	Mapping raised bogs with an iterative one-class classification approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120, 53-64.	4.9	38
29	Statistical Inference, Learning and Models in Big Data. International Statistical Review, 2016, 84, 371-389.	1.1	42
30	On the benefit of topographic dictionaries for detecting disease symptoms on hyperspectral 3D plant models. , 2016, , .		1
31	Shapelet-Based Sparse Representation for Landcover Classification of Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1623-1634.	2.7	28
32	IMAGE BASED EVALUATION FOR THE DETECTION OF CLUSTER PARAMETERS IN GRAPEVINE. Acta Horticulturae, 2015, , 335-340.	0.1	9
33	Landcover classification with self-taught learning on archetypal dictionaries. , 2015, , .		4
34	Spatio-temporal altimeter waveform retracking via sparse representation and conditional random fields. , 2015, , .		0
35	Can I Trust My One-Class Classification?. Remote Sensing, 2014, 6, 8779-8802.	1.8	40
36	Superpixel-based classification of hyperspectral data using sparse representation and conditional random fields. , 2014 , , .		13

#	Article	IF	Citations
37	Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields. Computers and Electronics in Agriculture, 2014, 100, 148-158.	3.7	63
38	Shapelet-based sparse image representation for landcover classification of hyperspectral data. , 2014, , .		3
39	Incremental Import Vector Machines for Classifying Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 3463-3473.	2.7	38
40	I2VM: Incremental import vector machines. Image and Vision Computing, 2012, 30, 263-278.	2.7	25
41	Incremental import vector machines for large area land cover classification. , 2011, , .		1
42	Import vector machines based classification of multisensor remote sensing data., 2011,,.		0
43	Kernel Discriminative Random Fields for land cover classification. , 2010, , .		13
44	JUNGLE-NET: USING EXPLAINABLE MACHINE LEARNING TO GAIN NEW INSIGHTS INTO THE APPEARANCE OF WILDERNESS IN SATELLITE IMAGERY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2021, 317-324.	0.0	6
45	DETECTION OF DISEASE SYMPTOMS ON HYPERSPECTRAL 3D PLANT MODELS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 89-96.	0.0	11
46	WHAT IDENTIFIES A WHALE BY ITS FLUKE? ON THE BENEFIT OF INTERPRETABLE MACHINE LEARNING FOR WHALE IDENTIFICATION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 1005-1012.	0.0	4
47	MULTI-MODAL DEEP LEARNING WITH SENTINEL-3 OBSERVATIONS FOR THE DETECTION OF OCEANIC INTERNAL WAVES. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 813-820.	0.0	5
48	LEARNING WITH REAL-WORLD AND ARTIFICIAL DATA FOR IMPROVED VEHICLE DETECTION IN AERIAL IMAGERY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 917-924.	0.0	1
49	EXPLAIN IT TO ME â€" FACING REMOTE SENSING CHALLENGES IN THE BIO- AND GEOSCIENCES WITH EXPLAINABLE MACHINE LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 817-824.	0.0	17
50	DETECTION OF DISEASE SYMPTOMS ON HYPERSPECTRAL 3D PLANT MODELS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 89-96.	0.0	10
51	INVESTIGATION OF LATENT TRACES USING INFRARED REFLECTANCE HYPERSPECTRAL IMAGING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 97-102.	0.0	O
52	INVESTIGATION OF LATENT TRACES USING INFRARED REFLECTANCE HYPERSPECTRAL IMAGING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 97-102.	0.0	0
53	ARCHETYPAL ANALYSIS FOR SPARSE REPRESENTATION-BASED HYPERSPECTRAL SUB-PIXEL QUANTIFICATION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-1/W1, 133-139.	0.0	0
54	INFERRING ROUTING PREFERENCES OF BICYCLISTS FROM SPARSE SETS OF TRAJECTORIES. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-4/W7, 107-114.	0.0	0

#	Article	IF	CITATIONS
55	SEMCITY TOULOUSE: A BENCHMARK FOR BUILDING INSTANCE SEGMENTATION IN SATELLITE IMAGES. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-5-2020, 109-116.	0.0	19