Katsunobu Hagihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7226002/publications.pdf

Version: 2024-02-01

24 papers 2,284 citations

759233 12 h-index 642732 23 g-index

24 all docs

24 docs citations

times ranked

24

2594 citing authors

#	Article	IF	CITATIONS
1	Cross-platform comparison of immune-related gene expression to assess intratumor immune responses following cancer immunotherapy. Journal of Immunological Methods, 2021, 494, 113041.	1.4	13
2	Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody-drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica, 2020, 50, 1242-1250.	1.1	31
3	Clonal Deletion of Tumor-Specific T Cells by Interferon- \hat{I}^3 Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity, 2019, 50, 477-492.e8.	14.3	93
4	Neoadjuvant sipuleucel-T induces both Th1 activation and immune regulation in localized prostate cancer. Oncolmmunology, 2019, 8, e1486953.	4.6	27
5	Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex. International Journal of Molecular Sciences, 2018, 19, 1660.	4.1	8
6	In Silico and In Vitro Analysis of Interaction between Ximelagatran and Human Leukocyte Antigen (HLA)-DRB1*07:01. International Journal of Molecular Sciences, 2017, 18, 694.	4.1	9
7	DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clinical Cancer Research, 2016, 22, 5097-5108.	7.0	599
8	Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate. Cell Chemical Biology, 2016, 23, 555-560.	5.2	14
9	Bystander killing effect of <scp>DS</scp> â€8201a, a novel antiâ€human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Science, 2016, 107, 1039-1046.	3.9	394
10	Thienopyridine P2Y12 receptor antagonists:unknown pharmacological active metabolites and metabolic activation mechanisms. Drug Delivery System, 2015, 30, 454-464.	0.0	0
11	Human Intestinal Raf Kinase Inhibitor Protein (RKIP) Catalyzes Prasugrel as a Bioactivation Hydrolase. Drug Metabolism and Disposition, 2015, 44, 115-123.	3.3	9
12	The Possible Mechanism of Idiosyncratic Lapatinib-Induced Liver Injury in Patients Carrying Human Leukocyte Antigen-DRB1*07:01. PLoS ONE, 2015, 10, e0130928.	2.5	11
13	Glutaredoxin Is Involved in the Formation of the Pharmacologically Active Metabolite of Clopidogrel from Its GSH Conjugate. Drug Metabolism and Disposition, 2012, 40, 1854-1859.	3.3	7
14	Glutaredoxin and Thioredoxin Can Be Involved in Producing the Pharmacologically Active Metabolite of a Thienopyridine Antiplatelet Agent, Prasugrel. Drug Metabolism and Disposition, 2011, 39, 208-214.	3.3	11
15	The Intestine As an Important Contributor to Prasugrel Active Metabolite Formation In Vivo. Drug Metabolism and Disposition, 2011, 39, 565-570.	3.3	9
16	Biotransformation of Prasugrel, a Novel Thienopyridine Antiplatelet Agent, to the Pharmacologically Active Metabolite. Drug Metabolism and Disposition, 2010, 38, 898-904.	3.3	29
17	Identification of the Human Cytochrome P450 Enzymes Involved in the Two Oxidative Steps in the Bioactivation of Clopidogrel to Its Pharmacologically Active Metabolite. Drug Metabolism and Disposition, 2010, 38, 92-99.	3.3	711
18	Mechanism-Based Inhibition of Human Cytochrome P450 2B6 by Ticlopidine, Clopidogrel, and the Thiolactone Metabolite of Prasugrel. Drug Metabolism and Disposition, 2009, 37, 589-593.	3.3	54

#	Article	IF	CITATIONS
19	Comparison of formation of thiolactones and active metabolites of prasugrel and clopidogrel in rats and dogs. Xenobiotica, 2009, 39, 218-226.	1.1	31
20	A Possible Mechanism for the Differences in Efficiency and Variability of Active Metabolite Formation from Thienopyridine Antiplatelet Agents, Prasugrel and Clopidogrel. Drug Metabolism and Disposition, 2009, 37, 2145-2152.	3.3	108
21	Comparison of Human Cytochrome P450 Inhibition by the Thienopyridines Prasugrel, Clopidogrel, and Ticlopidine. Drug Metabolism and Pharmacokinetics, 2008, 23, 412-420.	2.2	70
22	Absorption, distribution and excretion of the new thienopyridine agent prasugrel in rats. Xenobiotica, 2007, 37, 788-801.	1.1	12
23	Isolation of proliferation factor of immature T-cell clone in concanavalin A-stimulated splenocyte culture supernatant. Immunology, 2003, 109, 209-216.	4.4	2
24	Immunostimulatory oligodeoxynucleotide induces TH1 immune response and inhibition of IgE antibody production to cedar pollen allergens in mice⯆⯆⯆⯆⯠Journal of Allergy and Clinical Immunology, 1999, 104, 1231-1238.	2.9	32