Zhegang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7225792/publications.pdf

Version: 2024-02-01

414414 516710 1,080 32 16 32 citations g-index h-index papers 33 33 33 1404 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Construction of nanoaggregates from amphiphilic supramolecules containing barbiturate and <scp>Hamilton</scp> wedge units. Polymer International, 2022, 71, 478-486.	3.1	4
2	Nanoassemblies formed from amphiphilic pillar[5]arene–rod–coil macromolecules in water for the detection of aliphatic diamines. Dyes and Pigments, 2022, 199, 110052.	3.7	6
3	Stimuli-Responsive Supramolecular Chirality Switching and Nanoassembly Constructed by n-Shaped Amphiphilic Molecules in Aqueous Solution. Langmuir, 2021, 37, 1215-1224.	3.5	11
4	Tubular metal organic frameworks from the curvature of 2D-honeycombed metal coordination. Dalton Transactions, 2020, 49, 2403-2406.	3.3	3
5	Precisely Controlled Multidimensional Covalent Frameworks: Polymerization of Supramolecular Colloids. Angewandte Chemie - International Edition, 2020, 59, 21525-21529.	13.8	12
6	Precisely Controlled Multidimensional Covalent Frameworks: Polymerization of Supramolecular Colloids. Angewandte Chemie, 2020, 132, 21709-21713.	2.0	2
7	Catalytically-active porous assembly with dynamic pulsating motion for efficient exchange of products and reagents. Communications Chemistry, 2020, 3, .	4.5	5
8	Supramolecular Nanopumps with Chiral Recognition for Moving Organic Pollutants from Water. ACS Applied Materials & Distribution (2019), 11, 31220-31226.	8.0	20
9	Charge Regulation of Self-Assembled Tubules by Protonation for Efficiently Selective and Controlled Drug Delivery. IScience, 2019, 19, 224-231.	4.1	10
10	Two-Dimensional Cationic Networks and Their Spherical Curvature with Tunable Opening–Closing. Nano Letters, 2019, 19, 9131-9137.	9.1	9
11	Intelligent Mesoporous Materials for Selective Adsorption and Mechanical Release of Organic Pollutants from Water. Advanced Materials, 2018, 30, e1800683.	21.0	55
12	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. Angewandte Chemie - International Edition, 2017, 56, 11511-11514.	13.8	47
13	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. Angewandte Chemie, 2017, 129, 11669-11672.	2.0	6
14	Thermo-responsive chiral column by scissoring motion from rigid–flexible aromatic rod assembly. European Polymer Journal, 2016, 74, 38-42.	5.4	0
15	Guest-Driven Inflation of Self-Assembled Nanofibers through Hollow Channel Formation. Journal of the American Chemical Society, 2014, 136, 16152-16155.	13.7	39
16	Controlled Helicity of the Rigid-Flexible Molecular Assembly Triggered by Water Addition: From Nanocrystal to Liquid Crystal Gel and Aqueous Nanofibers. Journal of Physical Chemistry C, 2014, 118, 8181-8186.	3.1	17
17	3-D hexagonal close-packed nano-structure from self-organization of triblock copolymer containing lateral ethyl groups in the middle of rod segment. Macromolecular Research, 2013, 21, 624-628.	2.4	2
18	Supramolecular polymerization of spherical micelles triggered by donor–acceptor interactions. Polymer Chemistry, 2013, 4, 268-271.	3.9	12

#	Article	lF	Citations
19	Pulsating Tubules from Noncovalent Macrocycles. Science, 2012, 337, 1521-1526.	12.6	298
20	Multivalent Nanofibers of a Controlled Length: Regulation of Bacterial Cell Agglutination. Journal of the American Chemical Society, 2012, 134, 14722-14725.	13.7	64
21	Selfâ€assembly of rodâ€coil molecules into lateral chainâ€lengthâ€dependent supramolecular organization. Journal of Applied Polymer Science, 2012, 123, 1007-1014.	2.6	10
22	Induction of supramolecular chirality in self-assembled nanofibers triggered by environmental change. Journal of Materials Chemistry, 2011, 21, 15327.	6.7	26
23	Responsive nematic gels from the self-assembly of aqueous nanofibres. Nature Communications, 2011, 2, 459.	12.8	105
24	Supramolecular columnar nanostructures from selfâ€organization of coil–rod–coil molecules incorporating an anthracene unit. Polymer International, 2011, 60, 845-850.	3.1	16
25	Self-organization of amphiphilic diblock rod-coil molecule into supramolecular honeycomb and cylindrical aggregates and its application as Suzuki coupling reaction. Macromolecular Research, 2010, 18, 289-296.	2.4	8
26	Supramolecular honeycomb and columnar assemblies formed by self-assembly of coil-rod-coil molecules with a conjugated rod segment. Macromolecular Research, 2010, 18, 800-805.	2.4	13
27	Synthesis and selfâ€assembly of rodâ€coil molecules with nâ€shaped rod building block. Journal of Polymer Science Part A, 2010, 48, 1415-1422.	2.3	20
28	Synthesis and self-assembly of coil–rod–coil molecules with lateral methyl and ethyl groups in the center of the rod segment. Soft Matter, 2010, 6, 5993.	2.7	28
29	Aqueous nanofibers with switchable chirality formed of self-assembled dumbbell-shaped rod amphiphiles. Chemical Communications, 2009, , 6819.	4.1	30
30	Rigid–Flexible Block Molecules Based on a Laterally Extended Aromatic Segment: Hierarchical Assembly into Single Fibers, Flat Ribbons, and Twisted Ribbons. Chemistry - A European Journal, 2008, 14, 6957-6966.	3.3	47
31	Tunable Columnar Organization by Twisted Stacking of End-Capped Aromatic Rods. Chemistry of Materials, 2007, 19, 6569-6574.	6.7	17
32	Self-Assembling Molecular Dumbbells: From Nanohelices to Nanocapsules Triggered by Guest Intercalation. Angewandte Chemie - International Edition, 2006, 45, 5304-5307.	13.8	99