Carla Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7225781/publications.pdf

Version: 2024-02-01

85 papers

2,318 citations

201385 27 h-index 243296 44 g-index

86 all docs 86 docs citations

86 times ranked 2441 citing authors

#	Article	IF	CITATIONS
1	Betalains. , 2022, , 461-507.		0
2	Chemometric approaches to evaluate the substitution of synthetic food dyes by natural compounds: The case of nanoencapsulated curcumin, spirulina, and hibiscus extracts. LWT - Food Science and Technology, 2022, 154, 112786.	2.5	14
3	Evaluation of parasite and host phenolic composition and bioactivities â° The Practical Case of Cytinus hypocistis (L.) L. and Halimium lasianthum (Lam.) Greuter. Industrial Crops and Products, 2022, 176, 114343.	2.5	4
4	Evaluation of plant extracts as an efficient source of additives for active food packaging. Food Frontiers, 2022, 3, 480-488.	3.7	19
5	Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. Journal of Agricultural and Food Chemistry, 2022, 70, 2789-2805.	2.4	66
6	Valorization of Juglans regia Leaves as Cosmeceutical Ingredients: Bioactivity Evaluation and Final Formulation Development. Antioxidants, 2022, 11, 677.	2.2	6
7	Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chemistry, 2022, 384, 132462.	4.2	5
8	Extraction of chlorophylls from Daucus carota L. and Solanum lycopersicum var. cerasiforme crop by-products., 2022, 1, 100048.		8
9	Biochemical Approaches on Commercial Strains of Agaricus subrufescens Growing under Two Environmental Cultivation Conditions. Journal of Fungi (Basel, Switzerland), 2022, 8, 616.	1.5	O
10	Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae, 2022, 8, 645.	1.2	9
11	Phenolic Compounds and Bioactive Properties of Ruscus aculeatus L. (Asparagaceae): The Pharmacological Potential of an Underexploited Subshrub. Molecules, 2021, 26, 1882.	1.7	7
12	Bioactive and Nutritional Potential of Medicinal and Aromatic Plant (MAP) Seasoning Mixtures. Molecules, 2021, 26, 1587.	1.7	3
13	Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy, 2021, 11, 576.	1.3	5
14	Chemical Composition and Bioactive Characterisation of Impatiens walleriana. Molecules, 2021, 26, 1347.	1.7	9
15	Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods, 2021, 10, 700.	1.9	11
16	Phenolic profiling and in vitro bioactivities of three medicinal Bryophyllum plants. Industrial Crops and Products, 2021, 162, 113241.	2.5	15
17	Valorization of Cereal By-Products from the Milling Industry as a Source of Nutrients and Bioactive Compounds to Boost Resource-Use Efficiency. Agronomy, 2021, 11, 972.	1.3	4
18	Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants, 2021, 10, 1181.	1.6	18

#	Article	IF	CITATIONS
19	Red Seaweeds as a Source of Nutrients and Bioactive Compounds: Optimization of the Extraction. Chemosensors, 2021, 9, 132.	1.8	25
20	Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity. Food Chemistry, 2021, 351, 129263.	4.2	21
21	Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product. International Journal of Environmental Research and Public Health, 2021, 18, 9062.	1.2	7
22	Characterization of Nonconventional Food Plants Seeds Guizotia abyssinica (L.f.) Cass., Panicum miliaceum L., and Phalaris canariensis L. for Application in the Bakery Industry. Agronomy, 2021, 11, 1873.	1.3	4
23	Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum) Tj ETQq1 1 0.784	4314 rgBT 4.2	/Qyerlock I
24	Optimization of the drying process of autumn fruits rich in antioxidants: a study focusing on rosehip (<i>Rosa canina</i> L.) and sea buckthorn (<i>Elaeagnus rhamnoides</i> (L.) A. Nelson) and their bioactive properties. Food and Function, 2021, 12, 3939-3953.	2.1	12
25	Eggplant Fruit (Solanum melongena L.) and Bio-Residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. Applied Sciences (Switzerland), 2021, 11, 151.	1.3	16
26	Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq Antioxidants, 2021, 10, 1579.	2.2	10
27	Use of nanoencapsulated curcumin against vegetative cells and spores of Alicyclobacillus spp. in industrialized orange juice. International Journal of Food Microbiology, 2021, 360, 109442.	2.1	7
28	Sustainable Recovery of Preservative and Bioactive Compounds from Food Industry Bioresidues. Antioxidants, 2021, 10, 1827.	2.2	22
29	Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chemistry, 2020, 309, 125735.	4.2	63
30	Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Research International, 2020, 127, 108753.	2.9	44
31	Lovage (Levisticum officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources, 2020, 9, 81.	1.6	17
32	Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules, 2020, 25, 3203.	1.7	26
33	The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules, 2020, 25, 3175.	1.7	12
34	The Sustainable Use of Cotton, Hazelnut and Ground Peanut Waste in Vegetable Crop Production. Sustainability, 2020, 12, 8511.	1.6	4
35	Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules, 2020, 25, 2151.	1.7	11
36	Nutritive and Bioactive Properties of Mesquite (Prosopis pallida) Flour and Its Technological Performance in Breadmaking. Foods, 2020, 9, 597.	1.9	14

#	Article	IF	CITATIONS
37	Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules, 2020, 25, 2204.	1.7	20
38	Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa <i>BRS Piabiru</i> . Food and Function, 2020, 11, 2969-2977.	2.1	23
39	Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. Journal of Food Composition and Analysis, 2020, 89, 103463.	1.9	16
40	Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 2020, 333, 127457.	4.2	39
41	Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food and Chemical Toxicology, 2020, 137, 111189.	1.8	25
42	By-Products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh] as Promising Sources of Bioactive High Added-Value Food Ingredients: Functionalization of Yogurts. Molecules, 2020, 25, 70.	1.7	23
43	Chemical and bioactive characterization of the aromatic plant <i>Levisticum officinale</i> W.D.J. Koch: a comprehensive study. Food and Function, 2020, 11, 1292-1303.	2.1	61
44	Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv.) Tj ETQq0 0 () rgBT /Ove	rlock 10 Tf 5
45	Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants, 2020, 9, 314.	2.2	29
46	Red Algae as Source of Nutrients with Antioxidant and Antimicrobial Potential. Proceedings (mdpi), 2020, 70, .	0.2	0
47	Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus) Tj ETQq $1\ 1\ 0.75$	84 <u>31</u> 4 rgB1	- /Qverlock 1
48	Challenges of traditional herbal teas: plant infusions and their mixtures with bioactive properties. Food and Function, 2019, 10, 5939-5951.	2.1	21
49	Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. Journal of Cleaner Production, 2019, 240, 118254.	4.6	18
50	Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants, 2019, 8, 394.	2.2	33
51	Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 2019, 60, 103427.	1.6	77
52	Phytochemical profile and biological activities of 'Ora-pro-nobis' leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chemistry, 2019, 294, 302-308.	4.2	54
53	Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Industrial Crops and Products, 2019, 134, 347-355.	2.5	41
54	Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chemistry, 2019, 289, 404-412.	4.2	40

#	Article	IF	CITATIONS
55	Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules, 2019, 24, 573.	1.7	30
56	Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds. Journal of Functional Foods, 2019, 55, 325-332.	1.6	30
57	The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules, 2019, 24, 4494.	1.7	35
58	Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Industrial Crops and Products, 2019, 128, 496-503.	2. 5	131
59	Exploring reserve lots of Cymbopogon citratus , Aloysia citrodora and Thymusâ€Ã—â€citriodorus as improved sources of phenolic compounds. Food Chemistry, 2018, 257, 83-89.	4.2	10
60	Nutritional value and chemical composition of Greek artichoke genotypes. Food Chemistry, 2018, 267, 296-302.	4.2	50
61	Nutritional Value and Bioactive Compounds Characterization of Plant Parts From Cynara cardunculus L. (Asteraceae) Cultivated in Central Greece. Frontiers in Plant Science, 2018, 9, 459.	1.7	51
62	Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 2018, 113, 197-209.	2.9	83
63	Dehydration process influences the phenolic profile, antioxidant and antimicrobial properties of Galium aparine L Industrial Crops and Products, 2018, 120, 97-103.	2.5	9
64	Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food and Function, 2017, 8, 2022-2029.	2.1	35
65	Plantas aromáticas usadas como condimentos: prevalência de ácidos gordos polinsaturados. Revista De Ciências Agrárias, 2017, 40, S155-S159.	0.2	2
66	Dietary Supplements: Foods, Medicines, or Both? A Controversial Designation with Unspecific Legislation. Current Pharmaceutical Design, 2017, 23, 2722-2730.	0.9	14
67	Chapter 11. Food Irradiation Chemistry. Food Chemistry, Function and Analysis, 2017, , 210-236.	0.1	2
68	Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. Journal of the Science of Food and Agriculture, 2016, 96, 1068-1084.	1.7	52
69	Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food and Function, 2016, 7, 2223-2232.	2.1	46
70	Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements. Food and Function, 2016, 7, 4188-4192.	2.1	28
71	Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food and Function, 2016, 7, 3083-3090.	2.1	11
72	A comparison of the bioactivity and phytochemical profile of three different cultivars of globe amaranth: red, white, and pink. Food and Function, 2016, 7, 679-688.	2.1	15

#	Article	IF	Citations
73	Phenolic profile and antimicrobial activity of different dietary supplements based on Cochlospermum angolensis Welw Industrial Crops and Products, 2015, 74, 412-416.	2.5	10
74	A Comparison of the Nutritional Contribution of Thirty-nine Aromatic Plants used as Condiments and/or Herbal Infusions. Plant Foods for Human Nutrition, 2015, 70, 176-183.	1.4	31
75	Is honey able to potentiate the antioxidant and cytotoxic properties of medicinal plants consumed as infusions for hepatoprotective effects?. Food and Function, 2015, 6, 1435-1442.	2.1	13
76	Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food and Function, 2015, 6, 55-61.	2.1	23
77	Analytical Tools Used to Distinguish Chemical Profiles of Plants Widely Consumed as Infusions and Dietary Supplements: Artichoke, Milk Thistle, and Borututu. Food Analytical Methods, 2014, 7, 1604-1611.	1.3	6
78	New insights into the effects of formulation type and compositional mixtures on the antioxidant and cytotoxic activities of dietary supplements based-on hepatoprotective plants. Food and Function, 2014, 5, 2052-2060.	2.1	6
79	Effects of gamma radiation on chemical and antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of borututu. Innovative Food Science and Emerging Technologies, 2014, 26, 271-277.	2.7	14
80	Synergisms in antioxidant and anti-hepatocellular carcinoma activities of artichoke, milk thistle and borututu syrups. Industrial Crops and Products, 2014, 52, 709-713.	2.5	22
81	Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Analytical Methods, 2013, 6, 1337-1344.	1.3	121
82	Potentiating effects of honey on antioxidant properties of lemon-flavoured black tea. International Journal of Food Sciences and Nutrition, 2013, 64, 230-234.	1.3	10
83	Optimized Analysis of Organic Acids in Edible Mushrooms from Portugal by Ultra Fast Liquid Chromatography and Photodiode Array Detection. Food Analytical Methods, 2013, 6, 309-316.	1.3	142
84	Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Industrial Crops and Products, 2013, 49, 61-65.	2.5	52
85	Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Research International, 2011, 44, 2634-2640.	2.9	79