Helmut Harbrecht

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7225678/publications.pdf
Version: 2024-02-01

1 Compression Techniques for Boundary Integral Equations---Asymptotically Optimal Complexity
Estimates. SIAM Journal on Numerical Analysis, 2006, 43, 2251-2271. 2.3 1372.1135
On the low-rank approximation by the pivoted Cholesky decomposition. Applied Numerical Mathematics, 2012, 62, 428-440. 2
2.8 2.8 96
Wavelet Galerkin Schemes for Boundary Integral Equations---Implementation and Quadrature. SIAM $3 \quad$ Journal of Scientific Computing, 2006, 27, 1347-1370.
Sparse second moment analysis for elliptic problems in stochastic domains. Numerische Mathematik,1.92008, 109, 385-414.Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople$5 \quad$ Diagrams Revisited. Journal of Chemical Theory and Computation, 2019, 15, 1546-1559.
5.3 70
BPX-preconditioning for isogeometric analysis. Computer Methods in Applied Mechanics and 6.6 50
$6 \quad$ BPX-preconditioning for isogeo
$6.6 \quad 45$
$\begin{array}{ll}7 & \text { A fast isogeometric BEM for the three dimensional Laplace- and Helm } \\ \text { Methods in Applied Mechanics and Engineering, 2018, 330, 83-101. }\end{array}$8 Biorthogonal wavelet bases for the boundary element method. Mathematische Nachrichten, 2004,$8 \quad$ 269-270, 167-188.
0.8 43
9 Multilevel frames for sparse tensor product spaces. Numerische Mathematik, 2008, 110, 199-220.1.739
Mathematical analysis of the transmission dynamics of the liver fluke, Opisthorchis viverrini. Journalof Theoretical Biology, 2018, 439, 181-194.
1.6 38
11 Efficient approximation of random
Applications, 2015, 22, 596-617.
2.1 34Efficient treatment of stationary free boundary problems. Applied Numerical Mathematics, 2006, 56,
1326-1339.
2.1 33A finite element method for elliptic problems with stochastic input data. Applied Numerical
Mathematics, 2010, 60, 227-244.
2.8 32On the Numerical Solution of a Shape Optimization Problem for the Heat Equation. SIAM Journal ofScientific Computing, 2013, 35, A104-A121.1.931
First order second moment analysis for stochastic interface problems based on low-rank 15 approximation. ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, 1533-1552.$2.1 \quad 30$
Approximation of bi-variate functions: singular value decomposition versus sparse grids. IMA Journal
of Numerical Analysis, 2014, 34, 28-54.

A Newton method for Bernoulliâ $€^{T M}$ s free boundary problem in three dimensions. Computing (Vienna/New) Tj ETQqu. 00 rgBT. F Overlock

21	An interpolationâ€based fast multipole method for higherâ€order boundary elements on parametric surfaces. International Journal for Numerical Methods in Engineering, 2016, 108, 1705-1728.	2.8	20
22	An efficient numerical method for a shape-identification problem arising from the heat equation. Inverse Problems, 2011, 27, 065013.	2.0	19
23	On the computation of solution spaces in high dimensions. Structural and Multidisciplinary Optimization, 2016, 54, 811-829.	3.5	19
24	Tracking Neumann Data for Stationary Free Boundary Problems. SIAM Journal on Control and Optimization, 2010, 48, 2901-2916.	2.1	18
25	Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient. SIAM-ASA Journal on Uncertainty Quantification, 2016, 4, 520-551.	2.0	18
26	A Note on the Construction of L-Fold Sparse Tensor Product Spaces. Constructive Approximation, 2013, 38, 235-251.	3.0	17
27	Wavelet BEM on molecular surfaces: parametrization and implementation. Computing (Vienna/New) T		
28	Multiscale preconditioning for the coupling of FEM-BEM. Numerical Linear Algebra With Applications, 2003, 10, 197-222.	1.6	15
29	Coupling of FEM and BEM in Shape Optimization. Numerische Mathematik, 2006, 104, 47-68.	1.9	15
30	Analytical and numerical methods in shape optimization. Mathematical Methods in the Applied Sciences, 2008, 31, 2095-2114.	2.3	15
31	Shape Optimization for Quadratic Functionals and States with Random Right-Hand Sides. SIAM Journa on Control and Optimization, 2015, 53, 3081-3103.	2.1	15

32 Riesz minimal energy problems on Ckâ^1,1-manifolds. Mathematische Nachrichten, 2014, 287, 48-69.

[^0]2.1

12

On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations. Lecture Notes in
Computational Science and Engineering, 2012, , 161-179.
37

> Wavelet formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary elements. Physical Chemistry Chemical Physics, $2015,17,31566-31581$.
2.8

10

Analysis of interventions against the liver fluke, opisthorchis viverrini. Mathematical Biosciences,
1.9

10 $38 \quad$ Analysis of intervention $2018,303,115-125$.
On the Convergence of the Combination Technique. Lecture Notes in Computational Science and
Engineering, 2014, ,55-74.
$0.3 \quad 9$

40 Sparse tensor finite elements for elliptic multiple scale problems. Computer Methods in Applied
6.68

Mechanics and Engineering, 2011, 200, 3100-3110.
Optimization of current carrying multicables. Computational Optimization and Applications, 2016, 63,
$237-271$.

The second order perturbation approach for elliptic partial differential equations on random
domains. Applied Numerical Mathematics, 2018, 125, 159-171.
$2.1 \quad 7$

43	A fast sparse grid based spaceâ $\epsilon_{\text {"time boundary element method for the nonstationary heat equation. }}^{\text {the }}$. Numerische Mathematik, 2018, 140, 239-264.	1.9
44	Singular value decomposition versus sparse grids: refined complexity estimates. IMA Journal of Numerical Analysis, 2019, 39, 1652-1671.	2.9
45	Analysis of Tensor Approximation Schemes for Continuous Functions. Foundations of Computational Mathematics, 2023, 23, 219-240.	2.5
46	Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains. SIAM Journal on Numerical Analysis, 2020, 58, 684-705.	2.3

47 ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY. , 2017, 7, 335-353. 6

48 Compact gradient tracking in shape optimization. Computational Optimization and Applications, 2008, 39, 297-318.
1.6

5
49 Frames for the Solution of Operator Equations in Hilbert Spaces with Fixed Dual Pairing. Numerical Functional Analysis and Optimization, 2019, 40, 65-84.
$1.4 \quad 5$

A Newton method for reconstructing non star-shaped domains in electrical impedance tomography.
1.15 Inverse Problems and Imaging, 2009, 3, 353-371.

On the Numerical Solution of a Time-Dependent Shape Optimization Problem for the Heat Equation.
51 SIAM Journal on Control and Optimization, 2021,59,931-953.
On the Numerical Solution of a Time-Dependent Shape Optimization Problem for the Heat Equation.
SIAM Journal on Control and Optimization, 2021, 59, 931-953.
On the Numerical Solution of a Time-Dependent Shape Optimization Problem for the Heat Equation.
51 SIAM Journal on Control and Optimization, 2021,59,931-953.

A fast direct solver for nonlocal operators in wavelet coordinates. Journal of Computational Physics, 2021, 428, 110056.

55 Hierarchical matrix approximation for the uncertainty quantification of potentials on random

A sampling-based optimization algorithm for solution spaces with pair-wise-coupled design variables. Structural and Multidisciplinary Optimization, 2019, 60, 501-512.

Parametric representation of molecular surfaces. International Journal of Quantum Chemistry, 2019, 119, e25695.
2.0

Shape Optimization for Composite Materials and Scaffold Structures. Multiscale Modeling and Simulation, 2020, 18, 1136-1152.
1.6

3

59	Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. Computer Methods in Applied Mechanics and Engineering, 2022, 388, 114242.	6.6	3
60	On analytical derivatives for geometry optimization in the polarizable continuum model. Journal of Mathematical Chemistry, 2011, 49, 1928-1936.	1.5	2
61	Preconditioning of wavelet BEM by the incomplete Cholesky factorization. Computing and Visualization in Science, 2012, 15, 319-329.	1.2	2
62	A Note on Multilevel Based Error Estimation. Computational Methods in Applied Mathematics, 2016, 16, 447-458.	0.8	2
63	Rapid computation of far-field statistics for random obstacle scattering. Engineering Analysis With Boundary Elements, 2019, 101, 243-251.	3.7	2
64	Error-Controlled Model Approximation for Gaussian Process Morphable Models. Journal of Mathematical Imaging and Vision, 2019, 61, 443-457.	1.3	2

65 Second Moment Analysis for Robin Boundary Value Problems on Random Domains. , 2014, , 361-381.
2

Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM.
Stochastics and Partial Differential Equations: Analysis and Computations, 2022, 10, 1619-1650.
$0.9 \quad 2$

Isogeometric shape optimization of periodic structures in three dimensions. Computer Methods in
Applied Mechanics and Engineering, 2022, $391,114552$.
$6.6 \quad 2$

Rapid Solution of Minimal Riesz Energy Problems. Numerical Methods for Partial Differential
3.6

1 Equations, 2016, 32, 1535-1552.

Solving a free boundary problem with nonconstant coefficients. Mathematical Methods in the Applied Sciences, 2018, 41, 3653-3671.
2.3

1

Minimal energy problems for strongly singular Riesz kernels. Mathematische Nachrichten, 2018, 291,

[^0]: 33 On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion. Mathematics of Computation, 2016, 86, 771-797.

