Kwang-Il Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7225537/publications.pdf Version: 2024-02-01

KWANC-U LEE

#	Article	IF	CITATIONS
1	Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. International Journal of Machine Tools and Manufacture, 2013, 70, 45-52.	6.2	118
2	Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary axis using a double ball-bar. International Journal of Precision Engineering and Manufacturing, 2013, 14, 231-239.	1.1	77
3	Identification and measurement of geometric errors for a five-axis machine tool with a tilting head using a double ball-bar. International Journal of Precision Engineering and Manufacturing, 2011, 12, 337-343.	1.1	75
4	Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. International Journal of Advanced Manufacturing Technology, 2012, 62, 741-750.	1.5	73
5	Compensation of position-independent and position-dependent geometric errors in the rotary axes of five-axis machine tools with a tilting rotary table. International Journal of Advanced Manufacturing Technology, 2016, 85, 1677-1685.	1.5	31
6	Accuracy evaluation of machine tools by modeling spherical deviation based on double ball-bar measurements. International Journal of Machine Tools and Manufacture, 2013, 75, 46-54.	6.2	26
7	The optimal design of a measurement system to measure the geometric errors of linear axes. International Journal of Advanced Manufacturing Technology, 2013, 66, 141-149.	1.5	18
8	Identification of inherent position-independent geometric errors for three-axis machine tools using a double ballbar with an extension fixture. International Journal of Advanced Manufacturing Technology, 2019, 102, 2967-2976.	1.5	18
9	Optimal On-Machine Measurement of Position-Independent Geometric Errors for Rotary Axes in Five-Axis Machines with a Universal Head. International Journal of Precision Engineering and Manufacturing, 2018, 19, 545-551.	1.1	17
10	Parallelism error measurement for the spindle axis of machine tools by two circular tests with different tool lengths. International Journal of Advanced Manufacturing Technology, 2017, 88, 2883-2887.	1.5	13
11	Circular tests for accurate performance evaluation of machine tools via an analysis of eccentricity. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2499-2506.	1.1	11
12	Interim check and practical accuracy improvement for machine tools with sequential measurements using a double ball-bar on a virtual regular tetrahedron. International Journal of Advanced Manufacturing Technology, 2017, 93, 1527-1536.	1.5	10
13	Face- and Body-Diagonal Length Tests using a Double Ball-Bar for Squareness Errors of Machine Tools. International Journal of Precision Engineering and Manufacturing, 2018, 19, 1039-1045.	1.1	8
14	ldentification of 11 position-independent geometric errors of a five-axis machine tool using 3D geometric sensitivity analysis. International Journal of Advanced Manufacturing Technology, 2021, 113, 3271-3282.	1.5	8
15	Machine tool analyzer: a device for identifying 13 position-independent geometric errors for five-axis machine tools. International Journal of Advanced Manufacturing Technology, 2021, 115, 2945.	1.5	7
16	Performance evaluation of five-DOF motion in ultra-precision linear stage. International Journal of Precision Engineering and Manufacturing, 2014, 15, 129-134.	1.1	6
17	A Dual Difference Method for Identification of the Inherent Spindle Axis Parallelism Errors of Machine Tools. International Journal of Precision Engineering and Manufacturing, 2022, 23, 701-710.	1.1	3
18	Sequential Measurement of Position-independent Geometric Errors in the Rotary and Spindle Axes of a Hybrid Parallel Kinematic Machine. International Journal of Precision Engineering and Manufacturing, 2020, 21, 2391-2398.	1.1	2

KWANG-IL LEE

#	Article	IF	CITATIONS
19	Interim Check and Compensation of Geometric Errors to Improve Volumetric Error of Machine Tools. Journal of the Korean Society for Precision Engineering, 2018, 35, 623-627.	0.1	2
20	Compensation of position-independent geometric errors of an index table by linear axes circular tests at different angular positions. International Journal of Advanced Manufacturing Technology, 2015, 84, 981.	1.5	1
21	The Improved Reversal Method for Measurement of Geometric Error in Linear Manipulator of Ultra Precision. , 2013, , .		Ο
22	Improved accuracy of an FDM 3D printer using a face-diagonal length test using an artifact and a Vernier caliper. Rapid Prototyping Journal, 2021, ahead-of-print, .	1.6	0
23	A Novel Reversal Method for Measurement of Rotary Manipulator Geometric Errors. , 2021, , .		Ο
24	A TCP Calibration of a 6-Axis Manipulator and Geometric Errors Identification of a Tilting-Rotary Table. Journal of the Korean Society for Precision Engineering, 2022, 39, 253-261.	0.1	0