Scott A Mabury

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7224834/scott-a-mabury-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78	7,864	35	81
papers	citations	h-index	g-index
81	9,033	7.7	6.3
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
78	In Vivo Transformation of a Novel Polyfluoroether Surfactant. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 3328-3336	3.8	O
77	Rat Metabolism Study Suggests 3-(3,5-Dibutyl-4-hydroxyphenyl)propionic Acid as a Potential Urinary Biomarker of Human Exposure to Representative 3-(3,5-Dibutyl-4-hydroxyphenyl)propionate Antioxidants. <i>Environmental Science & Environmental Sc</i>	10.3	2
76	2021 , 55, 14051-14058 Atmospheric Fate of a New Polyfluoroalkyl Building Block, CFOCHFCFSCHCHOH. <i>Environmental Science & Eamp; Technology</i> , 2021 ,	10.3	3
75	Printing ink related chemicals, including synthetic phenolic antioxidants, organophosphite antioxidants, and photoinitiators, in printing paper products and implications for human exposure. <i>Environment International</i> , 2021 , 149, 106412	12.9	7
74	Significant Reductive Transformation of 6:2 Chlorinated Polyfluorooctane Ether Sulfonate to Form Hydrogen-Substituted Polyfluorooctane Ether Sulfonate and Their Toxicokinetics in Male Sprague-Dawley Rats. <i>Environmental Science & Enp.; Technology</i> , 2021 ,	10.3	1
73	Single-Use Face Masks as a Potential Source of Synthetic Antioxidants to the Environment. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 651-655	11	13
72	The Sulfoximine Insecticide Sulfoxaflor and Its Photodegradate Demonstrate Acute Toxicity to the Nontarget Invertebrate Species Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 215	56 ³ 2 ⁸ 164	1 ²
71	Novel High Molecular Weight Synthetic Phenolic Antioxidants in Indoor Dust in Toronto, Canada. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 14-19	11	12
70	The Environmental Degradation and Distribution of Saflufenacil, a Fluorinated Protoporphyrinogen IX Oxidase-Inhibiting Herbicide, on a Canadian Winter Wheat Field. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 1918-1928	3.8	4
69	Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. <i>Environmental Science & Environmental Occurrence, Fate, Human Exposure, and Toxicity. <i>Environmental Science & Environmental Occurrence</i>, Fate, Human Exposure, and Toxicity. <i>Environmental Science & Environmental Occurrence</i>, Fate, Human Exposure, and Toxicity. <i>Environmental Science & Environmental Occurrence</i>, Fate, Human Exposure, and Toxicity.</i>	10.3	55
68	First Report on In Vivo Pharmacokinetics and Biotransformation of Chlorinated Polyfluoroalkyl Ether Sulfonates in Rainbow Trout. <i>Environmental Science & Examp; Technology</i> , 2020 , 54, 345-354	10.3	10
67	Unique analytical considerations for laboratory studies identifying metabolic products of per- and polyfluoroalkyl substances (PFASs). <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 124, 115431	14.6	10
66	Organophosphite Antioxidants in Indoor Dust Represent an Indirect Source of Organophosphate Esters. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 1805-1811	10.3	38
65	Synthetic phenolic antioxidants and transformation products in dust from different indoor environments in Toronto, Canada. <i>Science of the Total Environment</i> , 2019 , 672, 23-29	10.2	26
64	Identification of Photoinitiators, Including Novel Phosphine Oxides, and Their Transformation Products in Food Packaging Materials and Indoor Dust in Canada. <i>Environmental Science &</i> <i>Technology</i> , 2019 , 53, 4109-4118	10.3	12
63	Unexpectedly high concentrations of 2,4-di-tert-butylphenol in human urine. <i>Environmental Pollution</i> , 2019 , 252, 1423-1428	9.3	25
62	Synthetic Phenolic Antioxidants in Personal Care Products in Toronto, Canada: Occurrence, Human Exposure, and Discharge via Greywater. <i>Environmental Science & Environmental </i>	48 ^{10.3}	19

61	Photoinitiators in Breast Milk from United States Donors: Occurrence and Implications for Exposure in Infants. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 702-707	11	10
60	Synthetic Phenolic Antioxidants and Transformation Products in Human Sera from United States Donors. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 419-423	11	40
59	Unexpectedly High Concentrations of a Newly Identified Organophosphate Ester, Tris(2,4-ditert-butylphenyl) Phosphate, in Indoor Dust from Canada. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 9677-9683	10.3	50
58	First Detection of Photoinitiators and Metabolites in Human Sera from United States Donors. <i>Environmental Science & Donors</i> , Technology, 2018 , 52, 10089-10096	10.3	16
57	Sorption of Perfluoroalkyl Phosphonates and Perfluoroalkyl Phosphinates in Soils. <i>Environmental Science & Environmental Scien</i>	10.3	22
56	Aerobic biodegradation of 2 fluorotelomer sulfonamide-based aqueous film-forming foam components produces perfluoroalkyl carboxylates. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2012-2021	3.8	56
55	Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 6735-6744	10.3	76
54	Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort-chain C2 and C3 compounds in rain and river water samples by ultra performance convergence chromatography. <i>Journal of Chromatography A</i> , 2017 , 1522, 78-85	4.5	42
53	Biological Cleavage of the CP Bond in Perfluoroalkyl Phosphinic Acids in Male Sprague-Dawley Rats and the Formation of Persistent and Reactive Metabolites. <i>Environmental Health Perspectives</i> , 2017 , 125, 117001	8.4	10
52	Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. <i>Environmental Science & Environmental Science & Environmen</i>	·1 3 643	85
51	Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)?. <i>Toxicology</i> , 2017 , 375, 28-36	4.4	47
50	A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. <i>Chemosphere</i> , 2016 , 161, 333-341	8.4	137
49	Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments. <i>Chemosphere</i> , 2016 , 164, 535-546	8.4	33
48	Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer. <i>Environmental Science & Environmental S</i>	10.3	10
47	Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. <i>Environmental Science & Environmental Science & Environ</i>	10.3	193
46	Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats. <i>Environmental Science & Description (PAPs)</i> and polyfluoroalkyl phosphate esters (PAPs) in rats. <i>Environmental Science & Description (PAPs)</i> and polyfluoroalkyl protection (PAPs) in rats.	10.3	11
45	Global Distribution of Polyfluoroalkyl and Perfluoroalkyl Substances and their Transformation Products in Environmental Solids 2014 , 797-826		1
44	Influence of fluorination on the characterization of fluorotelomer-based acrylate polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. <i>Analytica Chimica Acta</i> , 2014 , 808, 115-23	6.6	7

43	Bioconcentration of aqueous film-forming foam (AFFF) in juvenile rainbow trout (Oncorhyncus mykiss). <i>Environmental Science & Environmental Science & </i>	10.3	37
42	Perfluorotributylamine: A novel long-lived greenhouse gas. <i>Geophysical Research Letters</i> , 2013 , 40, 601	0 -6 915	15
41	Dietary bioaccumulation of perfluorophosphonates and perfluorophosphinates in juvenile rainbow trout: evidence of metabolism of perfluorophosphinates. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 3489-97	10.3	47
40	Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 513-41	2.5	1666
39	Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans?. <i>Environmental Science & Environmental Scien</i>	10.3	184
38	Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat. <i>Environmental Health Perspectives</i> , 2011 , 119, 344-50	8.4	128
37	Uptake and elimination of perfluorinated phosphonic acids in the rat. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1319-29	3.8	31
36	Determining the molecular interactions of perfluorinated carboxylic acids with human sera and isolated human serum albumin using nuclear magnetic resonance spectroscopy. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1678-88	3.8	57
35	Molecular structure and radiative efficiency of fluorinated ethers: A structure-activity relationship. <i>Journal of Geophysical Research</i> , 2008 , 113,		10
34	An Undergraduate Experiment for the Measurement of Perfluorinated Surfactants in Fish Liver by Liquid Chromatography I andem Mass Spectrometry. <i>Journal of Chemical Education</i> , 2007 , 84, 310	2.4	15
33	Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. <i>Environmental Science & Environmental Science & </i>	10.3	276
32	Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. <i>Environmental Science & Environmental </i>	10.3	209
31	Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: kinetics and mechanism of reaction with OH. <i>Environmental Science & Environmental Science</i>	10.3	250
30	Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. <i>Aquatic Sciences</i> , 2005 , 67, 177-188	2.5	215
29	Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. <i>Environmental Science & Environmental Science </i>	10.3	711
28	Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. <i>Environmental Science</i> & amp; Technology, 2004 , 38, 2857-64	10.3	400
27	The Use of 19F NMR to Interpret the Structural Properties of Perfluorocarboxylate Acids: A Possible Correlation with Their Environmental Disposition. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10099-10106	2.8	44
26	Improved Measurement of Seasonal and Diurnal Differences in the Carbonaceous Components of Urban Particulate Matter Using a Denuder-Based Air Sampler. <i>Aerosol Science and Technology</i> , 2004 , 38, 63-69	3.4	19

(2000-2003)

25	Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 189-195	3.8	329
24	Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 196-204	3.8	666
23	The use of 19F NMR and mass spectrometry for the elucidation of novel fluorinated acids and atmospheric fluoroacid precursors evolved in the thermolysis of fluoropolymers. <i>Analyst, The</i> , 2003 , 128, 756-64	5	34
22	. Environmental Toxicology and Chemistry, 2003 , 22, 189	3.8	133
21	Ecological impact and environmental fate of perfluorooctane sulfonate on the zooplankton community in indoor microcosms. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1490-1496	3.8	32
20	Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. <i>Environmental Science & Description</i> (2002), 36, 545-51	10.3	430
19	Ecological impact and environmental fate of perfluorooctane sulfonate on the zooplankton community in indoor microcosms 2002 , 21, 1490		2
18	Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2758-2767	3.8	23
17	Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. <i>Nature</i> , 2001 , 412, 321-4	50.4	221
16	Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and 19F NMR. <i>Analytical Chemistry</i> , 2001 , 73, 2200-6	7.8	198
15	Aqueous solubilities, photolysis rates and partition coefficients of benzoylphenylurea insecticides. <i>Pest Management Science</i> , 2000 , 56, 789-794	4.6	19
14	A new method for measuring carbonate radical reactivity toward pesticides. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1501-1507	3.8	79
13	Steady-state concentrations of carbonate radicals in field waters. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2181-2188	3.8	85
12	Hydrolysis kinetics of fenthion and its metabolites in buffered aqueous media. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 2582-8	5.7	15
11	A New Method for the Measurement of Airborne Formaldehyde Using Derivatization with 3,5-Bis(Trifluoromethyl) Phenylhydrazine and Analysis by GC-ECD and GC-MS/SIM. <i>International Journal of Environmental Analytical Chemistry</i> , 2000 , 76, 241-256	1.8	6
10	Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin. <i>Journal of Chemical Education</i> , 2000 , 77, 1630	2.4	11
9	An Undergraduate Experiment for the Measurement of Trace Metals in Core Sediments by ICP-AES and GFAAS. <i>Journal of Chemical Education</i> , 2000 , 77, 1611	2.4	11
8	Photodegradation of metolachlor: isolation, identification, and quantification of monochloroacetic acid. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 944-50	5.7	46

7	ELISA and GC-MS as Teaching Tools in the Undergraduate Environmental Analytical Chemistry Laboratory. <i>Journal of Chemical Education</i> , 2000 , 77, 1619	2.4	12	
6	Elucidation of fipronil photodegradation pathways. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 4661-5	5.7	37	
5	Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples. <i>Analytical Chemistry</i> , 2000 , 72, 726-31	7.8	37	
4	An Undergraduate Field Experiment for Measuring Exposure to Environmental Tobacco Smoke in Indoor Environments. <i>Journal of Chemical Education</i> , 1999 , 76, 1700	2.4		
3	Determination of Formaldehyde in Cigarette Smoke. <i>Journal of Chemical Education</i> , 1997 , 74, 1100	2.4	10	
2	19F-NMR as an analytical tool for fluorinated agrochemical research <i>Journal of Agricultural and Food Chemistry</i> , 1995 , 43, 1845-1848	5.7	26	
1	Perfluoroalkyl Compounds25-69		1	