Hao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7224114/publications.pdf Version: 2024-02-01

HAO MANC

#	Article	IF	CITATIONS
1	Analysis of precipitable water vapor from GPS measurements in Chengdu region: Distribution and evolution characteristics in autumn. Advances in Space Research, 2013, 52, 656-667.	2.6	42
2	Comparative Evaluation of the GPM IMERG Early, Late, and Final Hourly Precipitation Products Using the CMPA Data over Sichuan Basin of China. Water (Switzerland), 2020, 12, 554.	2.7	40
3	Downscaling of Satellite Remote Sensing Soil Moisture Products Over the Tibetan Plateau Based on the Random Forest Algorithm: Preliminary Results. Earth and Space Science, 2020, 7, e2020EA001265.	2.6	20
4	Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-Based GPS Technology. Atmosphere, 2015, 6, 908-927.	2.3	17
5	Can the GPM IMERG Hourly Products Replicate the Variation in Precipitation During the Wet Season Over the Sichuan Basin, China?. Earth and Space Science, 2020, 7, e2020EA001090.	2.6	16
6	Contextual Sa-Attention Convolutional LSTM for Precipitation Nowcasting: A Spatiotemporal Sequence Forecasting View. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 12479-12491.	4.9	15
7	Radar Echo Spatiotemporal Sequence Prediction Using an Improved ConvGRU Deep Learning Model. Atmosphere, 2022, 13, 88.	2.3	8
8	A rapid identification and warning method for severe weather via Doppler radar based on an improved TITAN algorithm. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193, 105080.	1.6	7
9	A feasibility study for the construction of an atmospheric precipitable water vapor model based on the neural network technology. Desalination and Water Treatment, 2014, 52, 7412-7421.	1.0	6
10	Temporal and Spatial Evolution Features of Precipitable Water in China during a Recent 65-Year Period (1951–2015). Advances in Meteorology, 2017, 2017, 1-11.	1.6	6
11	ADASYN-LOF Algorithm for Imbalanced Tornado Samples. Atmosphere, 2022, 13, 544.	2.3	6
12	Seasonal Error Component Analysis of the GPM IMERG Version 05 Precipitation Estimations Over Sichuan Basin of China. Earth and Space Science, 2021, 8, e2020EA001259.	2.6	5
13	Characteristic Analysis of the Downburst in Greely, Colorado on 30 July 2017 Using WPEA Method and X-Band Radar Observations. Atmosphere, 2018, 9, 348.	2.3	4
14	Downscaling of Remote Sensing Soil Moisture Products Based on TVDI in Complex Terrain Areas. , 2019, , .		4
15	Relationships Between Rapid Urbanization and Extreme Summer Precipitation Over the Sichuan–Chongqing Area of China. Frontiers in Earth Science, 0, 10, .	1.8	4
16	Improving the Predictability of Severe Convective Weather Processes by Using Wind Vectors and Potential Temperature Changes: A Case Study of a Severe Thunderstorm. Advances in Meteorology, 2016, 2016, 1-11.	1.6	3
17	Main Factors Influencing Winter Visibility at the Xinjin Flight College of the Civil Aviation Flight University of China. Advances in Meteorology, 2020, 2020, 1-13.	1.6	3
18	A Study of the Electrostatic Field Networking in Three Isolated Thunderstorms. Applied Mechanics and Materials, 0, 239-240, 775-784.	0.2	2

HAO WANG

#	Article	IF	CITATIONS
19	Physical statistical algorithm for precipitable water vapor inversion on land surface based on multi-source remotely sensed data. Science China Earth Sciences, 2015, 58, 2340-2352.	5.2	2
20	Comparison of Machine-Learning Algorithms for Near-Surface Air-Temperature Estimation from FY-4A AGRI Data. Advances in Meteorology, 2020, 2020, 1-14.	1.6	2
21	Construction and Application about the Monitoring System of Water Vapor Derived from Ground-based GPS in Chengdu. Geo-information Science, 2011, 13, 213-218.	0.1	2
22	Using GAMIT to Derive the Precipitabel Water Vapor. , 2010, , .		1
23	The integrative construction of GPS water vapor monitoring system. , 2011, , .		0