Sarah S N Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, structures and properties of hydrophobic Alkyltrimethoxysilane-Polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths. Journal of Colloid and Interface Science, 2022, 608, 720-734.	5.0	11
2	Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods. Renewable and Sustainable Energy Reviews, 2022, 162, 112415.	8.2	31
3	Openâ€cell polyvinylidene fluoride foams as carriers to promote biofilm growth for biological wastewater treatment. Polymer Engineering and Science, 2021, 61, 2161-2171.	1.5	9
4	Evaluation of a ZrO2/ZrO2-aerogel one-dimensional photonic crystal as an optical filter for thermophotovoltaic applications. Thermal Science and Engineering Progress, 2021, 25, 100968.	1.3	11
5	Characterization of open-cellular polymeric foams using micro-computed tomography. Polymer, 2020, 202, 122628.	1.8	7
6	Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Advanced Materials Technologies, 2020, 5, 1900939.	3.0	44
7	Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles. ACS Applied Energy Materials, 2020, 3, 3378-3386.	2.5	37
8	Tunable microcellular and nanocellular morphologies of poly(vinylidene) fluoride foams via crystal polymorphism control. Polymer Crystallization, 2019, 2, e10033.	0.5	3
9	Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites. Synthetic Metals, 2019, 247, 59-66.	2.1	22
10	Eliminating common biases in modelling the electrical conductivity of carbon nanotube–polymer nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 13118-13121.	1.3	3
11	Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking. Composites Part B: Engineering, 2018, 143, 9-18.	5.9	48
12	Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 178, 259-265.	3.0	59
13	Fabrication of open-cell thermoelectric polymer nanocomposites by template-assisted multi-walled carbon nanotubes coating. Composites Part B: Engineering, 2018, 145, 100-107.	5.9	27
14	Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers. Materials, 2018, 11, 1757.	1.3	15
15	Strain-induced oriented crystallization of UHMWPE: Enhanced thermal conductivity through molecular chain alignment. AIP Advances, 2018, 8, .	0.6	7
16	Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Composites Part B: Engineering, 2018, 150, 78-92.	5.9	101
17	Thermally conductive polybutylene terephthalate/hexagonal boron nitride composites with bimodal filler size distribution. Materials Chemistry and Physics, 2018, 214, 221-228.	2.0	8
18	Multi-stage crystallization mechanism of electroactive phase polyvinylidene fluoride induced by thermal and supercritical carbon dioxide processing. CrystEngComm, 2018, 20, 4080-4089.	1.3	15

SARAH S N LEUNG

#	Article	IF	CITATIONS
19	Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foamingâ€induced microstructuring. Journal of Applied Polymer Science, 2017, 134, 45073.	1.3	12
20	Fabrication of electroactive poly(vinylidene fluoride) through non-isothermal crystallization and supercritical CO ₂ processing. RSC Advances, 2017, 7, 48712-48722.	1.7	20
21	Preparation and characterization of 100% bio-based polylactic acid/palmitic acid microcapsules for thermal energy storage. Materials for Renewable and Sustainable Energy, 2017, 6, 14.	1.5	29
22	Development of thermally conductive polymer matrix composites by foamingâ€assisted networking of micron―and submicronâ€scale hexagonal boron nitride. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
23	Thermoforming of Polylactic Acid Foam Sheets: Crystallization Behaviors and Thermal Stability. Industrial & Engineering Chemistry Research, 2016, 55, 560-567.	1.8	36
24	Modelling of effective thermal conductivity of polymer matrix composite foams with biaxially aligned filler networks. Journal of Cellular Plastics, 2016, 52, 89-106.	1.2	8
25	Elucidation of structure-to-property relationships of piezoresistive polymer-carbon nanotube nanocomposites. Journal of Applied Physics, 2015, 118, 044907.	1.1	5
26	Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Composites Part B: Engineering, 2015, 83, 184-193.	5.9	44
27	Fabrication and characterization of ceramic-filled thermoplastics composites with enhanced multifunctional properties. Journal of Thermoplastic Composite Materials, 2014, 27, 541-557.	2.6	10
28	Synergistic effects of hybrid fillers on the development of thermally conductive polyphenylene sulfide composites. Journal of Applied Polymer Science, 2013, 127, 3293-3301.	1.3	45
29	Study on Liquid Crystal Polymer-Hexagonal Boron Nitride Composites for Hybrid Heat Sinks. Industrial & Engineering Chemistry Research, 2013, 52, 8332-8339.	1.8	13
30	Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates. Composites Part B: Engineering, 2013, 45, 43-49.	5.9	49
31	Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide based composites. Polymer Engineering and Science, 2013, 53, 2398-2406.	1.5	40
32	Development of novel multifunctional biobased polymer composites with tailored conductive network of micro-and-nano-fillers. Proceedings of SPIE, 2013, , .	0.8	2
33	Applications of multifunctional polymer-matrix composites in hybrid heat sinks. , 2012, , .		0
34	Novel Thermally Conductive Thermoplastic/Ceramic Composite Foams. Macromolecular Materials and Engineering, 2012, 297, 1014-1020.	1.7	18
35	Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012, 63, 187-198.	1.6	174
36	Enhanced thermal conductivity of novel multifunctional polyphenylene sulfide composites embedded with heat transfer networks of hybrid fillers. Proceedings of SPIE, 2011, , .	0.8	0

SARAH S N LEUNG

#	Article	IF	CITATIONS
37	A batch foaming visualization system with extensional stress-inducing ability. Chemical Engineering Science, 2011, 66, 55-63.	1.9	77
38	The effect of dispersed elastomer particle size on heterogeneous nucleation of TPO with N2 foaming. Chemical Engineering Science, 2011, 66, 3675-3686.	1.9	37
39	Preparation of microcellular poly(ethyleneâ€ <i>co</i> â€octene) rubber foam with supercritical carbon dioxide. Journal of Applied Polymer Science, 2010, 116, 1994-2004.	1.3	35
40	Numerical Investigation of Nucleating-Agent-Enhanced Heterogeneous Nucleation. Industrial & Engineering Chemistry Research, 2010, 49, 12783-12792.	1.8	81
41	Effects of Nucleating Agents' Shapes and Interfacial Properties on Cell Nucleation. Journal of Cellular Plastics, 2010, 46, 441-460.	1.2	37
42	Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009, 64, 4899-4907.	1.9	109
43	Strategies To Estimate the Pressure Drop Threshold of Nucleation for Polystyrene Foam with Carbon Dioxide. Industrial & Engineering Chemistry Research, 2009, 48, 1921-1927.	1.8	19
44	Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2008, 108, 3997-4003.	1.3	46
45	A thermodynamic model for ternary mixture systems—Gas blends in a polymer melt. Fluid Phase Equilibria, 2008, 266, 129-142.	1.4	23
46	GUILLAINâ€BARRÉ SYNDROME IN ELDERLY PEOPLE. Journal of the American Geriatrics Society, 2008, 56, 381-382.	1.3	4
47	Role of Processing Temperature in Polystyrene and Polycarbonate Foaming with Carbon Dioxide. Industrial & Engineering Chemistry Research, 2007, 46, 7107-7116.	1.8	41
48	Impact of approximating the initial bubble pressure on cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2007, 104, 902-908.	1.3	19
49	Computer Simulation of Bubble-Growth Phenomena in Foaming. Industrial & Engineering Chemistry Research, 2006, 45, 7823-7831.	1.8	108
50	Numerical simulation of polymeric foaming processes using modified nucleation theory. Plastics, Rubber and Composites, 2006, 35, 93-100.	0.9	64