
James M Antonini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7223693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health Effects of Welding. Critical Reviews in Toxicology, 2003, 33, 61-103.	1.9	390
2	Pulmonary effects of welding fumes: Review of worker and experimental animal studies. American Journal of Industrial Medicine, 2003, 43, 350-360.	1.0	202
3	Efficacy of a Technique for Exposing the Mouse Lung to Particles Aspirated from the Pharynx. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 1441-1452.	1.1	191
4	Pulmonary Responses to Welding Fumes: Role of Metal Constituents. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 233-249.	1.1	171
5	Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and Infectivity. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 579-590.	1.4	165
6	Effects of Welding Fumes of Differing Composition and Solubility on Free Radical Production and Acute Lung Injury and Inflammation in Rats. Toxicological Sciences, 2003, 75, 181-191.	1.4	101
7	Fate of manganese associated with the inhalation of welding fumes: Potential neurological effects. NeuroToxicology, 2006, 27, 304-310.	1.4	99
8	State-of-the-Science Review: Does Manganese Exposure During Welding Pose a Neurological Risk?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2007, 10, 417-465.	2.9	91
9	Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Particle and Fibre Toxicology, 2013, 10, 5.	2.8	86
10	Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats. Toxicology and Applied Pharmacology, 2007, 223, 234-245.	1.3	83
11	Design, Construction, and Characterization of a Novel Robotic Welding Fume Generator and Inhalation Exposure System for Laboratory Animals. Journal of Occupational and Environmental Hygiene, 2006, 3, 194-203.	0.4	78
12	Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes. Archives of Toxicology, 2010, 84, 521-540.	1.9	76
13	Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB Journal, 2010, 24, 4989-5002.	0.2	75
14	Pneumotoxicity and Pulmonary Clearance of Different Welding Fumes after Intratracheal Instillation in the Rat. Toxicology and Applied Pharmacology, 1996, 140, 188-199.	1.3	72
15	Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicology Letters, 1998, 98, 77-86.	0.4	70
16	Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Particle and Fibre Toxicology, 2010, 7, 32.	2.8	69
17	Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Molecular and Cellular Biochemistry, 2005, 279, 17-23.	1.4	59
18	Immunotoxicology of arc welding fume: Worker and experimental animal studies. Journal of Immunotoxicology, 2012, 9, 411-425.	0.9	57

JAMES M ANTONINI

#	Article	IF	CITATIONS
19	Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials, 2017, 7, 307.	1.9	56
20	Responses to Welding Fumes: Lung Injury, Inflammation, and the Release of Tumor Necrosis Factor-α and Interleukin-1β. Experimental Lung Research, 1997, 23, 205-227.	0.5	51
21	Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. NeuroToxicology, 2009, 30, 915-925.	1.4	51
22	Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhalation Toxicology, 2010, 22, 805-816.	0.8	51
23	Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). I. Effects of DEPs on early pulmonary responses Environmental Health Perspectives, 2002, 110, 1105-1111.	2.8	50
24	Effect of Age on Respiratory Defense Mechanisms. Chest, 2001, 120, 240-249.	0.4	48
25	Performance evaluation of cytometric bead assays for the measurement of lung cytokines in two rodent models. Journal of Immunological Methods, 2008, 331, 59-68.	0.6	48
26	Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Archives of Toxicology, 2011, 85, 487-498.	1.9	46
27	Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume. Particle and Fibre Toxicology, 2008, 5, 12.	2.8	45
28	Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type. Journal of Environmental Monitoring, 2009, 11, 418-424.	2.1	42
29	Manganese accumulation in nail clippings as a biomarker of welding fume exposure and neurotoxicity. Toxicology, 2012, 291, 73-82.	2.0	41
30	Residual Oil Fly Ash Increases the Susceptibility to Infection and Severely Damages the Lungs after Pulmonary Challenge with a Bacterial Pathogen. Toxicological Sciences, 2002, 70, 110-119.	1.4	40
31	A Comparison of Cytotoxicity and Oxidative Stress from Welding Fumes Generated with a New Nickel-, Copper-Based Consumable versus Mild and Stainless Steel-Based Welding in RAW 264.7 Mouse Macrophages. PLoS ONE, 2014, 9, e101310.	1.1	40
32	A Comparison of the Pulmonary Inflammatory Potential of Different Components of Yeast Cell Wall*. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1116-1124.	1.1	39
33	Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes. Toxicology and Applied Pharmacology, 2004, 200, 206-218.	1.3	34
34	Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Toxicology, 2015, 328, 168-178.	2.0	34
35	Chromium in Stainless Steel Welding Fume Suppresses Lung Defense Responses Against Bacterial Infection in Rats. Journal of Immunotoxicology, 2007, 4, 117-127.	0.9	33
36	Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. Journal of Allergy and Clinical Immunology, 2016, 137, 527-534.e7.	1.5	33

JAMES M ANTONINI

#	Article	IF	CITATIONS
37	Short-Term Inhalation Exposure to Mild Steel Welding Fume had no Effect on Lung Inflammation and Injury but did Alter Defense Responses to Bacteria in Rats. Inhalation Toxicology, 2009, 21, 182-192.	0.8	32
38	Systemic immune cell response in rats after pulmonary exposure to manganese-containing particles collected from welding aerosols. Journal of Immunotoxicology, 2012, 9, 184-192.	0.9	32
39	Oxidative stress, DNA methylation, and telomere length changes in peripheral blood mononuclear cells after pulmonary exposure to metal-rich welding nanoparticles. NanoImpact, 2017, 5, 61-69.	2.4	32
40	Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity. Nanotoxicology, 2011, 5, 700-710.	1.6	29
41	Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume. Annals of Occupational Hygiene, 2013, 57, 1167-79.	1.9	29
42	Role of metal-induced reactive oxygen species generation in lung responses caused by residual oil fly ash. Journal of Biosciences, 2003, 28, 13-18.	0.5	28
43	Metal composition and solubility determine lung toxicity induced by residual oil fly ash collected from different sites within a power plant. Molecular and Cellular Biochemistry, 2004, 255, 257-265.	1.4	28
44	Welding Fume Exposure and Associated Inflammatory and Hyperplastic Changes in the Lungs of Tumor Susceptible A/J Mice. Toxicologic Pathology, 2006, 34, 364-372.	0.9	28
45	Suppression of Phagocytic and Bactericidal Functions of Rat Alveolar Macrophages by the Organic Component of Diesel Exhaust Particles. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 820-828.	1.1	27
46	Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Particle and Fibre Toxicology, 2013, 10, 45.	2.8	27
47	Relationship between pulmonary and systemic markers of exposure to multiple types of welding particulate matter. Toxicology, 2011, 287, 153-159.	2.0	26
48	Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice. Respiratory Research, 2010, 11, 70.	1.4	25
49	Soluble Metals Associated with Residual Oil Fly Ash Increase Morbidity and Lung Injury After Bacterial Infection in Rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 251-263.	1.1	24
50	Inhalation exposure of gas-metal arc stainless steel welding fume increased atherosclerotic lesions in apolipoprotein E knockout mice. Toxicology Letters, 2011, 204, 12-16.	0.4	23
51	Short-term inhalation of stainless steel welding fume causes sustained lung toxicity but no tumorigenesis in lung tumor susceptible A/J mice. Inhalation Toxicology, 2011, 23, 112-120.	0.8	22
52	Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Nanotoxicology, 2017, 11, 1-12.	1.6	22
53	PULMONARY RESPONSES TO SINGLE VERSUS MULTIPLE INTRATRACHEAL INSTILLATIONS OF SILICA IN RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2000, 62, 9-21.	1.1	20
54	Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding–stainless steel fume: Iron as a primary mediator versus chromium and nickel. PLoS ONE, 2018, 13, e0209413.	1.1	20

JAMES M ANTONINI

#	Article	IF	CITATIONS
55	Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Particle and Fibre Toxicology, 2014, 11, 34.	2.8	19
56	Inhalation of gas metal arc–stainless steel welding fume promotes lung tumorigenesis in A/J mice. Archives of Toxicology, 2017, 91, 2953-2962.	1.9	17
5 7	Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel. Inhalation Toxicology, 2014, 26, 720-732.	0.8	16
58	Cardiovascular effects in rats after intratracheal instillation of metal welding particles. Inhalation Toxicology, 2015, 27, 45-53.	0.8	15
59	A possible relationship between telomere length and markers of neurodegeneration in rat brain after welding fume inhalation exposure. Environmental Research, 2020, 180, 108900.	3.7	15
60	STRAIN-RELATED DIFFERENCES OF NONSPECIFIC RESPIRATORY DEFENSE MECHANISMS IN RATS USING A PULMONARY INFECTIVITY MODEL. Inhalation Toxicology, 2001, 13, 85-102.	0.8	14
61	Pulmonary Exposure to 1→3-β-Glucan Alters Adaptive Immune Responses in Rats. Inhalation Toxicology, 2006, 18, 865-874.	0.8	14
62	Toxicological Evaluation of Lung Responses After Intratracheal Exposure to Non-Dispersed Titanium Dioxide Nanorods. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 790-810.	1.1	14
63	Lung Tumor Production and Tissue Metal Distribution After Exposure to Manual Metal ARC–Stainless Steel Welding Fume in A/J and C57BL/6J Mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 728-736.	1.1	14
64	Aerosol characterization and pulmonary responses in rats after short-term inhalation of fumes generated during resistance spot welding of galvanized steel. Toxicology Reports, 2017, 4, 123-133.	1.6	14
65	Influence of welding fume metal composition on lung toxicity and tumor formation in experimental animal models. Journal of Occupational and Environmental Hygiene, 2019, 16, 372-377.	0.4	14
66	Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding. Environmental Health Insights, 2014, 8s1, EHI.S15260.	0.6	13
67	The soluble nickel component of residual oil fly ash alters pulmonary host defense in rats. Journal of Immunotoxicology, 2009, 6, 49-61.	0.9	12
68	Type I interferon and pattern recognition receptor signaling following particulate matter inhalation. Particle and Fibre Toxicology, 2012, 9, 25.	2.8	12
69	Development of an animal model to study the potential neurotoxic effects associated with welding fume inhalation. NeuroToxicology, 2006, 27, 745-751.	1.4	11
70	Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats. Toxicology and Applied Pharmacology, 2007, 221, 306-319.	1.3	11
71	Adjuvant effect of zymosan after pulmonary treatment in a mouse ovalbumin allergy model. Experimental Lung Research, 2013, 39, 48-57.	0.5	10
72	Effect of a High-Fat Diet and Occupational Exposure in Different Rat Strains on Lung and Systemic Responses: Examination of the Exposome in an Animal Model. Toxicological Sciences, 2020, 174, 100-111.	1.4	10

James M Antonini

#	Article	IF	CITATIONS
73	Telomeres in toxicology: Occupational health. , 2021, 220, 107742.		9
74	Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system. Inhalation Toxicology, 2014, 26, 708-719.	0.8	8
75	Alterations in Cardiomyocyte Function After Pulmonary Treatment with Stainless Steel Welding Fume in Rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 705-715.	1.1	8
76	Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats. Inhalation Toxicology, 2014, 26, 697-707.	0.8	8
77	Inhalation of welding fumes reduced sperm counts and high fat diet reduced testosterone levels; differential effects in Sprague Dawley and Brown Norway rats. Particle and Fibre Toxicology, 2020, 17, 2.	2.8	8
78	Welder's Anthrax: A Review of an Occupational Disease. Pathogens, 2022, 11, 402.	1.2	8
79	Comparison of cell counting methods in rodent pulmonary toxicity studies: automated and manual protocols and considerations for experimental design. Inhalation Toxicology, 2016, 28, 410-420.	0.8	7
80	Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver. Toxicology Reports, 2020, 7, 1350-1355.	1.6	6
81	Effect of Asphalt Fume Inhalation Exposure at Simulated Road Paving Conditions Prior to Bacterial Infection on Lung Defense Responses in Rats. Inhalation Toxicology, 2003, 15, 1347-1368.	0.8	5
82	PREEXPOSURE TO REPEATED LOW DOSES OF ZYMOSAN INCREASES THE SUSCEPTIBILITY TO PULMONARY INFECTION IN RATS. Experimental Lung Research, 2009, 35, 570-590.	0.5	5
83	SINGLE PRE-EXPOSURE TO A HIGH DOSE OF ZYMOSAN ENHANCES LUNG DEFENSE MECHANISMS AND ACCELERATES THE PULMONARY CLEARANCE OF A BACTERIAL PATHOGEN IN RATS. Experimental Lung Research, 2008, 34, 559-578.	0.5	4
84	Review of the physicochemical properties and associated health effects of aerosols generated during thermal spray coating processes. Toxicology and Industrial Health, 2021, 37, 47-58.	0.6	4
85	Introduction of Luminol-Dependent Chemiluminescence as a Method to Study Silica Inflammation in the Tissue and Phagocytic Cells of Rat Lung. Environmental Health Perspectives, 1994, 102, 37.	2.8	3
86	Mitochondrial dysfunction and loss of Parkinson's diseaseâ€linked proteins contribute to neurotoxicity of manganeseâ€containing welding fumes. FASEB Journal, 2010, 24, 4989-5002.	0.2	2
87	Occupational Health and Industrial Hygiene. Environmental Health Insights, 2014, 8s1, EHI.S24583.	0.6	2
88	Development of a thermal spray coating aerosol generator and inhalation exposure system. Toxicology Reports, 2022, 9, 126-135.	1.6	2
89	Bioactivity of Circulatory Factors After Pulmonary Exposure to Mild or Stainless Steel Welding Fumes. Toxicological Sciences, 2020, 177, 108-120.	1.4	1
90	Lung toxicity profile of inhaled copper-nickel welding fume in A/J mice. Inhalation Toxicology, 0, , 1-12.	0.8	1

#	Article	IF	CITATIONS
91	Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles. Toxicology and Applied Pharmacology, 2017, 326, 1-6.	1.3	0