Mojtaba Amini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/722295/publications.pdf Version: 2024-02-01

Μοιτάρα Δμινί

#	Article	IF	CITATIONS
1	Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. Journal of Environmental Chemical Engineering, 2020, 8, 103726.	6.7	271
2	Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano Structures Nano Objects, 2018, 14, 19-48.	3.5	122
3	Oxido-peroxido molybdenum(VI) complexes in catalytic and stoichiometric oxidations. Coordination Chemistry Reviews, 2013, 257, 1093-1121.	18.8	116
4	Synthesis, X-ray structure and oxidation catalysis of a oxido–peroxido molybdenum(VI) complex with a tridentate Schiff base ligand. Inorganic Chemistry Communication, 2012, 20, 86-89.	3.9	109
5	A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions, 2012, 41, 11026.	3.3	89
6	Monomeric and dimeric oxido–peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coordination Chemistry Reviews, 2014, 268, 83-100.	18.8	81
7	On the importance of tetrel bonding interactions in lead(<scp>ii</scp>) complexes with (iso)nicotinohydrazide based ligands and several anions. Dalton Transactions, 2016, 45, 10708-10716.	3.3	78
8	Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable. Journal of Colloid and Interface Science, 2019, 536, 328-338.	9.4	73
9	Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE® RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Advances, 2015, 5, 44516-44523.	3.6	64
10	Palladium and copper complexes with oxygen–nitrogen mixed donors as efficient catalysts for the Heck reaction. Inorganica Chimica Acta, 2012, 383, 46-51.	2.4	59
11	Cube-octameric silsesquioxane-mediated cargo copper Schiff base for efficient click reaction in aqueous media. Journal of Molecular Catalysis A, 2016, 414, 47-54.	4.8	59
12	Ligand-Driven Coordination Sphere-Induced Engineering of Hybride Materials Constructed from PbCl ₂ and Bis-Pyridyl Organic Linkers for Single-Component Light-Emitting Phosphors. Inorganic Chemistry, 2017, 56, 9698-9709.	4.0	56
13	Molybdenum oxo–peroxo complex: A very fast catalyst for oxidation and reduction of sulfur-based compounds. Catalysis Communications, 2012, 23, 14-19.	3.3	51
14	New insights in Type I and <scp>II CD</scp> 20 antibody mechanismsâ€ofâ€action with a panel of novel <scp>CD</scp> 20 antibodies. British Journal of Haematology, 2018, 180, 808-820.	2.5	51
15	Catalytic efficiency of a novel complex of oxoperoxo molybdenum(VI): Synthesis, X-ray structure and alkane oxidation. Inorganic Chemistry Communication, 2012, 15, 52-55.	3.9	49
16	Synthesis, characterization and catalytic study of a novel iron(III)-tridentate Schiff base complex in sulfide oxidation by UHP. Inorganic Chemistry Communication, 2009, 12, 21-25.	3.9	48
17	An ultrasensitive label-free colorimetric biosensor for the detection of glucose based on glucose oxidase-like activity of nanolayered manganese-calcium oxide. Analytica Chimica Acta, 2020, 1110, 98-108.	5.4	46
18	Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catalysis Communications, 2015, 72, 1-5.	3.3	45

#	Article	IF	CITATIONS
19	Anion-driven tetrel bond-induced engineering of lead(<scp>ii</scp>) architectures with N′-(1-(2-pyridyl)ethylidene)nicotinohydrazide: experimental and theoretical findings. Inorganic Chemistry Frontiers, 2017, 4, 171-182.	6.0	44
20	Pd(OAc)2 without added ligand as an active catalyst for Mizoroki–Heck reaction in aqueous media. RSC Advances, 2012, 2, 12091.	3.6	42
21	Enhancing forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) thin-film composite membrane via the incorporation of GQDs@UiO-66-NH particles. Journal of Water Process Engineering, 2020, 33, 101107.	5.6	41
22	New molybdenum(VI) complex with ONS-donor thiosemicarbazone ligand: Preparation, structural characterization, and catalytic applications in olefin epoxidation. Inorganic Chemistry Communication, 2013, 27, 26-30.	3.9	40
23	Catalytic oxidation of sulfides to sulfoxide using manganese(III) complexes with bidentate O,N-donor oxazoline ligand and UHP oxidizing agent. Catalysis Communications, 2008, 10, 196-200.	3.3	39
24	A new vanadium Schiff base complex as catalyst for oxidation of alcohols. Journal of Coordination Chemistry, 2010, 63, 3849-3858.	2.2	39
25	Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polymer Chemistry, 2019, 10, 3674-3711.	3.9	39
26	Two new silver(I) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz): Preparation, characterization, crystal structure and alcohol oxidation activity in the presence of oxone. Polyhedron, 2010, 29, 2837-2843.	2.2	38
27	Catalytic activity of MnO _x /WO ₃ nanoparticles: synthesis, structure characterization and oxidative degradation of methylene blue. New Journal of Chemistry, 2014, 38, 1250-1255.	2.8	37
28	Epoxidation of olefins catalyzed by a molybdenum-Schiff base complex anchored in the pores of SBA-15. Journal of Molecular Catalysis A, 2014, 395, 470-480.	4.8	35
29	Copper nanoparticles supported on CeO2 as an efficient catalyst for click reactions of azides with alkynes. Catalysis Communications, 2016, 85, 13-16.	3.3	34
30	Synthesis, structure, and catalytic properties of copper, palladium and cobalt complexes containing an N,O-type bidentate thiazoline ligand. Inorganica Chimica Acta, 2016, 443, 22-27.	2.4	34
31	Two new copper(II) complexes with chelating N,O-type bidentate ligands: Synthesis, characterization, crystal structure and catalytic activity in azide–alkyne cycloaddition reaction. Inorganica Chimica Acta, 2017, 466, 398-404.	2.4	32
32	Spinel copper ferrite nanoparticles: Preparation, characterization and catalytic activity. Applied Organometallic Chemistry, 2018, 32, e4470.	3.5	32
33	A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. ELife, 2017, 6, .	6.0	32
34	Rapid oxidative degradation of methylene blue by various metal oxides doped with vanadium. RSC Advances, 2015, 5, 37469-37475.	3.6	31
35	Polyamide-zinc oxide-based thin film nanocomposite membranes: Towards improved performance for forward osmosis. Polyhedron, 2020, 179, 114362.	2.2	31
36	Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. Ecotoxicology and Environmental Safety, 2021, 220, 112402.	6.0	31

#	Article	IF	CITATIONS
37	Vanadium (V) and Tungsten (VI) Oxoperoxo-Complexes Anchored on Fe3O4 Magnetic Nanoparticles: Versatile and Efficient Catalysts for the Oxidation of Alcohols and Sulfides. Catalysis Letters, 2017, 147, 2106-2115.	2.6	29
38	High-performance thin-film nanocomposite (TFN) forward osmosis (FO) membranes incorporated with porous hydrophobic-core/hydrophilic-shell nanoparticles. Desalination, 2021, 515, 115181.	8.2	29
39	Catalytic efficacy of an oxido-peroxido tungsten(VI) complex: synthesis, X-ray structure and oxidation of sulfides and olefins. Journal of Coordination Chemistry, 2013, 66, 1897-1905.	2.2	28
40	New molybdenum (VI) catalyst for the epoxidation of alkenes and oxidation of sulfides: An experimental and theoretical study. Inorganica Chimica Acta, 2014, 411, 61-66.	2.4	28
41	Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances, 2013, 3, 24069.	3.6	27
42	Nano-layered manganese oxides as low-cost, easily synthesized, environmentally friendly and efficient catalysts for epoxidation of olefins. RSC Advances, 2012, 2, 3654.	3.6	26
43	Efficient imidazolium salts for palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions. Chinese Chemical Letters, 2013, 24, 433-436.	9.0	26
44	Selective oxidation of sulfides and olefins by a manganese(III) complex containing an N,O-type bidentate oxazine ligand. Journal of Coordination Chemistry, 2013, 66, 464-472.	2.2	26
45	Preparation and characterization of TiO2-nanotube/Ti plates loaded Cu2O nanoparticles as a novel heterogeneous catalyst for the azide–alkyne cycloaddition. Catalysis Communications, 2016, 76, 72-75.	3.3	26
46	POSS-Based Covalent Networks: Supporting and Stabilizing Pd for Heck Reaction in Aqueous Media. Catalysis Letters, 2017, 147, 1086-1094.	2.6	26
47	Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Frontiers of Chemical Science and Engineering, 2019, 13, 563-573.	4.4	26
48	Synthesis, Xâ€ray structure, characterization and catalytic activity of a polymeric manganese(II) complex with iminodiacetate. Applied Organometallic Chemistry, 2011, 25, 559-563.	3.5	25
49	Manganese(II) complexes of 2,3,5,6-tetra-(2-pyridyl)pyrazine – Syntheses, crystal structures, spectroscopic, magnetic and catalytic properties. Polyhedron, 2013, 53, 132-143.	2.2	25
50	Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties. Chinese Chemical Letters, 2017, 28, 1125-1130.	9.0	25
51	Synthesis, X-ray structure, DFT studies, and catalytic activity of a vanadium(V) complex containing a tridentate Schiff base. Journal of Coordination Chemistry, 2013, 66, 3770-3781.	2.2	24
52	V-doped titanium mixed oxides as efficient catalysts for oxidation of alcohols and olefins. New Journal of Chemistry, 2014, 38, 1581.	2.8	24
53	Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance. Desalination, 2022, 521, 115386.	8.2	24
54	Synthesis, characterization, DFT studies and catalytic activities of manganese(ii) complex with 1,4-bis(2,2′:6,2′:terpyridin-4′-yl) benzene. Dalton Transactions, 2012, 41, 12282.	3.3	23

#	Article	IF	CITATIONS
55	Use of a molybdenum(VI) dioxide complex as a homogeneous and heterogeneous magnetically recoverable epoxidation catalyst. Transition Metal Chemistry, 2015, 40, 321-331.	1.4	22
56	Magnetic (chitosan/laponite)-immobilized copper(<scp>ii</scp>) ions: an efficient heterogeneous catalyst for azide–alkyne cycloaddition. New Journal of Chemistry, 2017, 41, 3821-3828.	2.8	21
57	High-flux thin film nanocomposite forward osmosis membrane incorporated with blue lemon polyoxometalate based open-framework. Journal of Polymer Research, 2019, 26, 1.	2.4	21
58	MATISSE: a method for improved single cell segmentation in imaging mass cytometry. BMC Biology, 2021, 19, 99.	3.8	21
59	Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, Northwestern Iran. BMC Ecology, 2020, 20, 60.	3.0	20
60	Synthesis, structural characterization and alcohol oxidation activity of a new mononuclear manganese(II) complex. Transition Metal Chemistry, 2010, 35, 297-303.	1.4	19
61	Synthesis, X-ray studies, and catalytic activity of tridentate Schiff base dioxo-molybdenum(VI). Journal of Coordination Chemistry, 2014, 67, 2435-2444.	2.2	19
62	New mononuclear manganese(II) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) – selective catalyst in UHP oxidation of sulfides. Polyhedron, 2012, 34, 202-209.	2.2	18
63	Nanolayered manganese-calcium oxide as an efficient and environmentally friendly catalyst for alcohol oxidation. Journal of Molecular Catalysis A, 2014, 394, 303-308.	4.8	18
64	Polyoxomolybdate-stabilized Cu2O nanoparticles as an efficient catalyst for the azide–alkyne cycloaddition. New Journal of Chemistry, 2016, 40, 5313-5317.	2.8	17
65	Copper (II) Oxide Nanoparticles as an Efficient Catalyst in the Azide–AlkyneCycloaddition. ChemistrySelect, 2016, 1, 4607-4612.	1.5	17
66	New cadmium(II) and zinc(II) coordination polymers derived from a pyridine-hydrazone block: Self-assembly generation, structural and topological features, and theoretical analysis. Inorganica Chimica Acta, 2017, 458, 68-76.	2.4	16
67	Thinâ€film nanocomposite forward osmosis membranes modified with Zrâ€based metal–organic framework to improve desalination performance. Applied Organometallic Chemistry, 2020, 34, e5339.	3.5	16
68	Dual enzymes-mimic activity of nanolayered manganese-calcium oxide for fluorometric determination of metformin. Chemosphere, 2022, 291, 133063.	8.2	16
69	Nano-sized Mn oxides as true catalysts for alcohol oxidation by a mononuclear manganese(<scp>ii</scp>) complex. Dalton Transactions, 2015, 44, 15121-15125.	3.3	15
70	Mizorokiâ¿¿Heck reaction over palladium nanoparticles supported on WO3. Materials Research Bulletin, 2016, 83, 179-185.	5.2	15
71	The effects of temperature and vacancies on dynamics of crack in graphene sheet. AIP Advances, 2014, 4,	1.3	14
72	Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. Comptes Rendus Chimie, 2015, 18, 199-203.	0.5	14

#	Article	IF	CITATIONS
73	Oxoperoxo tungsten(VI) complex immobilized on Schiff base-modified Fe ₃ O ₄ magnetic nanoparticles as a heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide. Journal of Coordination Chemistry, 2017, 70, 328-339.	2.2	14
74	Copper (I) complex of 2,9-dimethyl-1,10-phenanthroline: Synthesis, structure, and catalytic properties. Inorganica Chimica Acta, 2018, 482, 333-339.	2.4	14
75	Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: a Swiss-army-knife catalyst. Scientific Reports, 2021, 11, 6642.	3.3	14
76	Synthesis, X-ray studies, DFT calculations and catalytic activity of a novel iron complex containing an N,O-type bidentate oxazine ligand. Polyhedron, 2013, 61, 94-98.	2.2	13
77	Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction. Chemical Papers, 2014, 68, .	2.2	13
78	A hexanuclear manganese(<scp>ii</scp>) complex: synthesis, characterization and catalytic activity toward organic sulfide oxidation. New Journal of Chemistry, 2014, 38, 5069-5074.	2.8	13
79	8-Hydroxyquinoline Functionalized Graphene Oxide: an Efficient Fluorescent Nanosensor for Zn2+ in Aqueous Media. Journal of Fluorescence, 2018, 28, 1173-1180.	2.5	13
80	A sensitive colori/fluorimetric nanoprobe for detection of polyphenols using peroxidase-mimic plasma-modified MoO3 nanoparticles. Chemosphere, 2022, 295, 133747.	8.2	13
81	Molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand: synthesis, X-ray studies, and catalytic activity. Journal of Coordination Chemistry, 2014, 67, 1429-1436.	2.2	12
82	An efficient glucose-based ligand for Heck and Suzuki coupling reactions in aqueous media. Journal of the Iranian Chemical Society, 2014, 11, 441-446.	2.2	12
83	Synthesis, characterization and catalytic properties of a copper complex containing decavanadate nanocluster, Na 2 [Cu(H 2 O) 6] 2 {V 10 O 28 }·4H 2 O. Inorganic Chemistry Communication, 2017, 77, 72-76.	3.9	12
84	Suzuki–Miyaura cross-coupling reactions in water using in situ generated palladium(II)–phosphazane complexes. Chinese Chemical Letters, 2014, 25, 166-168.	9.0	11
85	Selective Oxidation of Sulfides Catalyzed by the Nanocluster Polyoxomolybdate (NH4)12[Mo36(NO)4O108(H2O)16]. European Journal of Inorganic Chemistry, 2015, 2015, 3873-3878.	2.0	11
86	Efficient and green oxidative degradation of methylene blue using Mn-doped ZnO nanoparticles (Zn _{1â^} <i>_x</i> Mn <i>_x</i> O). Journal of Experimental Nanoscience, 2015, 10, 1256-1268.	2.4	11
87	Synthesis, characterization and catalytic properties of tetrachlorocuprate(II) immobilized on layered double hydroxide. Applied Organometallic Chemistry, 2017, 31, e3710.	3.5	11
88	A new decavanadate polyoxovanadate nanocluster: synthesis, characterization and rapid adsorption of methylene blue. Journal of Coordination Chemistry, 2017, 70, 2940-2949.	2.2	11
89	Oxidoâ€peroxido W(VI)â€histidine–MgAl″ayered double hydroxide composite as an efficient catalyst in sulfide oxidation. Applied Organometallic Chemistry, 2018, 32, e4358.	3.5	11
90	Immobilization of copper nanoparticles on WO ₃ with enhanced catalytic activity for the synthesis of 1,2,3â€ŧriazoles. Applied Organometallic Chemistry, 2020, 34, e5959.	3.5	11

#	Article	IF	CITATIONS
91	Lessons from metal oxides to find why Nature selected manganese and calcium for water oxidation. International Journal of Hydrogen Energy, 2017, 42, 8539-8544.	7.1	10
92	Preparation and Characterization of Magnetic Chitosan/Cu–Mg–Al Layered Double Hydroxide Nanocomposite for the One-Pot Three-Component (A3) Coupling of Aldehydes, Amines and Alkynes. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2028-2035.	3.7	10
93	Synthesis, characterization and catalytic properties of a new binuclear copper(II) complex in the azide–alkyne cycloaddition. Polyhedron, 2020, 188, 114698.	2.2	10
94	MATISSE: An analysis protocol for combining imaging mass cytometry with fluorescence microscopy to generate single-cell data. STAR Protocols, 2022, 3, 101034.	1.2	10
95	Synthesis, Xâ€ray Studies, and Catalytic Efficacy of a Novel Iron Complex Containing an N,Oâ€Ţype Bidentate Thiazoline Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 385-389.	1.2	9
96	Nanolayered manganese–calcium oxide as an efficient catalyst toward organic sulfide oxidation. RSC Advances, 2014, 4, 10851-10855.	3.6	9
97	A novel iron complex containing an N,O-type bidentate oxazoline ligand: Synthesis, X-ray studies, DFT calculations and catalytic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 432-438.	3.9	9
98	Synthesis, characterization and catalytic properties of a copper-containing polyoxovanadate nanocluster in azide–alkyne cycloaddition. Journal of Coordination Chemistry, 2017, 70, 1564-1572.	2.2	9
99	A novel high-flux, thin-film composite desalination membrane via co-deposition of multifunctional polyhedral oligomeric silsesquioxane and polyoxometalate. Polyhedron, 2019, 168, 138-145.	2.2	9
100	Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. European Journal of Immunology, 2021, 51, 471-482.	2.9	9
101	2-Aminoisoindoline-1,3-Dione-Functionalized Fe ₃ O ₄ /Chloro-Silane Core-Shell Nanoparticles as Reusable Catalyst: An Efficient Heterogeneous Magnetic Nanoparticles for Synthesis of 4 <i>H</i> -Pyran Derivatives through Multicomponent Reaction. Polycyclic Aromatic Compounds, 2022, 42, 4561-4577.	2.6	9
102	A new nanocluster polyoxomolybdate [Mo36O110(NO)4(H2O)14]·52H2O: Synthesis, characterization and application in oxidative degradation of common organic dyes. Chinese Journal of Chemical Engineering, 2018, 26, 337-342.	3.5	8
103	Synthesis of copper nanoparticles supported on MoO ₃ using Sun spurge leaf extract and their catalytic activity. Applied Organometallic Chemistry, 2018, 32, e4531.	3.5	8
104	Synthesis of dipyroromethanes in water and investigation of electronic and steric effects in efficiency of olefin epoxidation by sodium periodate catalyzed by manganese tetraaryl and <i>trans</i> disubstituted porphyrin complexes. Journal of Porphyrins and Phthalocyanines, 2019, 23. 671-678.	0.8	8
105	Novel thin film nanocomposite membranes incorporated with polyoxovanadate nanocluster for high water flux and antibacterial properties. Applied Organometallic Chemistry, 2020, 34, e5494.	3.5	8
106	Synthesis and application of the uniform particle size of nano-γ-Fe2O3: dispersed nanoparticles of γ-Fe2O3 for green synthesis of aminophosphonates. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	7
107	Catalytic oxidation of organic sulfides by new iron-chloro Schiff base complexes: The effect of methoxy substitution and ligand isomerism on the electronic, electrochemical and catalytic performance of the complexes. Polyhedron, 2021, 200, 115135.	2.2	7
108	Synthesis and characterization of a new polyoxometalate nanocluster containing Mo and V as an environmentally green catalyst for oxidative degradation of organic pollutants from aquatic environments. Applied Organometallic Chemistry, 2022, 36, e6511.	3.5	7

#	Article	IF	CITATIONS
109	Synthesis of Peroxidase-Like V2O5 Nanoparticles for Dye Removal from Aqueous Solutions. Topics in Catalysis, 2022, 65, 694-702.	2.8	7
110	A water-oxidizing dinuclear iron complex as an efficient catalyst toward organic sulfide oxidation. Journal of Coordination Chemistry, 2014, 67, 3026-3032.	2.2	6
111	Catalytic behavior of an iron(III) complex containing an N,O-type bidentate oxazoline ligand for selective oxidation of sulfides. Transition Metal Chemistry, 2016, 41, 97-105.	1.4	6
112	Immobilization of dioxomolybdenum(VI) Schiff base complex on graphene oxide nanosheets and its catalytic activity for oxidation of sulfides. Journal of Coordination Chemistry, 2017, 70, 2986-2998.	2.2	6
113	Preparation and Characterization of Thinâ€Film Nanocomposite Membrane Incorporated with MoO ₃ Nanoparticles with High Flux Performance for Forward Osmosis. ChemistrySelect, 2019, 4, 7832-7837.	1.5	6
114	Nanoâ€based methods for novel coronavirus 2019 (2019â€nCoV) diagnosis: A review. Cell Biochemistry and Function, 2021, 39, 29-34.	2.9	6
115	d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction. Chemical Papers, 2013, 67, .	2.2	5
116	Iron oxide on carbonâ€based supports as efficient catalysts for organic compounds oxidation. Applied Organometallic Chemistry, 2017, 31, e3892.	3.5	5
117	Synthesis, crystal structure and catalytic activity of an oxo-diperoxo tungsten(VI) complex containing an oxazine ligand for selective oxidation of sulfides. Journal of Coordination Chemistry, 2018, 71, 3405-3414.	2.2	5
118	Synthesis of rod-like CeO2 nanoparticles and their application to catalyze the luminal–O2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid. Analytical Sciences, 2022, 38, 787-793.	1.6	5
119	Trans,trans,trans-[ReO2I2(PPh3)2], a rare rhenium(VI) complex — Synthesis and DFT study. Inorganic Chemistry Communication, 2015, 51, 83-86.	3.9	4
120	Preparation, characterization and catalytic reactivity of WO3@PdO core@shell nanospheres in the Mizoroki–Heck reaction. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 207-217.	1.7	4
121	Synthesis and characterization of two binuclear nickel(II) complexes of thiophenol-based "end-off― compartmental ligands and their application as catalysts for selective oxidation of sulfides. Journal of Coordination Chemistry, 2016, 69, 103-111.	2.2	4
122	Efficient and selective oxidation of olefins and alcohols using nanoparticles of WO3-supported manganese oxides (W1â^'x Mn x O3). Korean Journal of Chemical Engineering, 2016, 33, 126-131.	2.7	4
123	Vanadium supported on spinel cobalt ferrite nanoparticles as an efficient and magnetically recoverable catalyst for oxidative degradation of methylene blue. Applied Organometallic Chemistry, 2019, 33, e5127.	3.5	4
124	Selective oxidation of organosulfurs with a sandwich-type polyoxometalate/hydrogen peroxide system. Polyhedron, 2020, 186, 114622.	2.2	4
125	Synthesis and characterization of a new polyoxovanadate for the one-pot three-component (A3) coupling of aldehydes, amines and alkynes. Molecular Catalysis, 2020, 483, 110769.	2.0	4
126	Vanadium oxideâ€supported copper ferrite nanoparticles: A reusable and highly efficient catalyst for rhodamine B degradation via activation of peroxymonosulfate. Applied Organometallic Chemistry, 2021, 35, e6367.	3.5	4

#	Article	IF	CITATIONS
127	Effect of 8-Week of Selected Aerobic Exercise on Static and Dynamic Balance in Healthy Elderly Inactive Men. Salmand: Iranian Journal of Ageing, 2016, 11, 202-209.	0.5	4
128	The Potential of West Nile Virus Transmission Regarding the Environmental Factors Using Geographic Information System (GIS), West Azerbaijan Province, Iran. Journal of Arthropod-Borne Diseases, 2019, 13, 27-38.	0.9	4
129	A novel 12-molybdovanadate nanocluster: Synthesis, structure investigation and its application as an efficient heterogeneous sulfoxidation catalyst. Inorganic Chemistry Communication, 2017, 83, 103-108.	3.9	3
130	Simple Preparation of Cuprous Oxide Nanoparticles for Catalysis of Azide–alkyne Cycloaddition. Journal of Chemical Research, 2018, 42, 166-169.	1.3	3
131	A novel binuclear iron(III)-salicylaldazine complex; synthesis, X-ray structure and catalytic activity in sulfide oxidation. Polyhedron, 2020, 183, 114531.	2.2	3
132	Preparation and investigation of copper–manganese mixed oxides as a high-efficiency catalyst for the azide-alkyne 1,3-dipolar cycloaddition reaction. Polyhedron, 2019, 160, 58-62.	2.2	1
133	Copper(II) Acetate. Synlett, 2012, 23, 1995-1996.	1.8	0
134	Application of 3-aroyl-4(5)-arylimidazols as efficient ligands in Pd-catalyzed Heck reactions. Turkish Journal of Chemistry, 2014, 38, 547-552.	1.2	0
135	Nickel cobaltite nanoparticles: preparation, characterization, and catalytic activity. Ionics, 2019, 25, 2887-2892.	2.4	0
136	The Effect of Diaphragmatic Respiratory Training on Some Lung Factors in Chronic Obstructive Pulmonary Disease. Salmand: Iranian Journal of Ageing, 0, , .	0.5	0
137	Working Memory and Note Quantity: Their Relationship with Consecutive Interpreting in Proficient Bilinguals. Implications for Aptitude Tests of Interpreting. Sendebar, 0, 31, 479-502.	0.0	0