
Nitin P Wasekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222938/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Pulsed electrodeposition and mechanical properties of Ni-W/SiC nano-composite coatings. Materials and Design, 2016, 112, 140-150.	7.0	159
2	Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surface and Coatings Technology, 2016, 291, 130-140.	4.8	112
3	Sliding wear behavior of electrodeposited Ni–W alloy and hard chrome coatings. Wear, 2015, 342-343, 340-348.	3.1	83
4	Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2309-2321.	2.2	64
5	Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Applied Surface Science, 2020, 527, 146896.	6.1	63
6	Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content. Corrosion Science, 2020, 165, 108409.	6.6	60
7	Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings. Surface and Coatings Technology, 2017, 319, 403-414.	4.8	57
8	Influence of molybdenum on the mechanical properties, electrochemical corrosion and wear behavior of electrodeposited Ni-Mo alloy. Surface and Coatings Technology, 2019, 370, 298-310.	4.8	55
9	Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings. Applied Surface Science, 2016, 364, 264-272.	6.1	54
10	Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size. Wear, 2012, 296, 536-546.	3.1	50
11	Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 370-378.	2.2	49
12	Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites. Journal of Materials Engineering and Performance, 2018, 27, 5236-5245.	2.5	49
13	Mechanical properties, thermal stability and corrosion behavior of electrodeposited Ni-B/AlN nanocomposite coating. Surface and Coatings Technology, 2018, 337, 335-341.	4.8	41
14	Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy. Journal of Materials Engineering and Performance, 2008, 17, 708-713.	2.5	38
15	Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy. International Journal of Fatigue, 2018, 106, 165-174.	5.7	33
16	Experimental investigation of grain boundaries misorientations and nano twinning induced strengthening on addition of silicon carbide in pulse electrodeposited nickel tungsten composite coating. Materials Characterization, 2016, 116, 1-7.	4.4	30
17	Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy. International Journal of Fatigue, 2011, 33, 1268-1276.	5.7	29
18	High-Cycle Fatigue Behavior of Microarc Oxidation Coatings Deposited on a 6061-T6 Al Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 255-265.	2.2	28

NITIN P WASEKAR

#	Article	IF	CITATIONS
19	Influence of pulsed current on the aqueous corrosion resistance of electrodeposited zinc. Surface and Coatings Technology, 2015, 272, 373-379.	4.8	26
20	The influence of the coating technique on the high cycle fatigue life of alumina coated Al 6061 alloy. Transactions of the Indian Institute of Metals, 2010, 63, 203-208.	1.5	20
21	A new model for predicting the grain size of electrodeposited nanocrystalline nickel coatings containing sulphur, phosphorus or boron based on typical systems. Journal of Electroanalytical Chemistry, 2019, 833, 198-204.	3.8	19
22	Sliding wear of as-deposited and heat-treated nanocrystalline nickel-tungsten alloy coatings. Wear, 2018, 412-413, 136-143.	3.1	13
23	The influence of grain size and triple junctions on corrosion behavior of nanocrystalline Ni and Ni-W alloy. Scripta Materialia, 2022, 213, 114604.	5.2	13
24	Corrosion behaviour of compositionally modulated nanocrystalline Ni–W coatings. Surface Engineering, 2020, 36, 952-959.	2.2	12
25	Role of Silicon Carbide in Phase-Evolution and Oxidation Behaviors of Pulse Electrodeposited Nickel-Tungsten Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 501-512.	2.2	11
26	Influence of SiC reinforcement content and heat treatment on the corrosion behavior of pulsed electrodeposited Ni-W alloy metal matrix composite. Materialia, 2022, 22, 101390.	2.7	11
27	Effect of annealing and irradiation on the evolution of texture and grain boundary interface in electrodeposited nanocrystalline nickel of varying grain sizes. Surface and Coatings Technology, 2021, 426, 127770.	4.8	9
28	Solid Particle Erosion of Nanocrystalline Nickel Coatings: Influence of Grain Size and Adiabatic Shear Bands. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 476-489.	2.2	8
29	Effect of grain size on the thermal stability of electrodeposited nanocrystalline nickel: X-ray diffraction studies. Thin Solid Films, 2022, 745, 139114	1.8	4