Heidrun L Deissler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222435/publications.pdf Version: 2024-02-01

HEINDLIN | DEISSLED

#	Article	IF	CITATIONS
1	Blocking of VEGF-A is not sufficient to completely revert its long-term effects on the barrier formed by retinal endothelial cells. Experimental Eye Research, 2022, 216, 108945.	1.2	6
2	Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A165 No Longer Depends on the Growth Factor's Presence. Biomolecules, 2022, 12, 734.	1.8	2
3	Type of culture medium determines properties of cultivated retinal endothelial cells: induction of substantial phenotypic conversion by standard DMEM. Heliyon, 2021, 7, e06037.	1.4	6
4	Transport and fate of aflibercept in VEGF-A165-challenged retinal endothelial cells. Experimental Eye Research, 2020, 198, 108156.	1.2	5
5	VEGF receptor 2 inhibitor nintedanib completely reverts VEGF-A165-induced disturbances of barriers formed by retinal endothelial cells or long-term cultivated ARPE-19Âcells. Experimental Eye Research, 2020, 194, 108004.	1.2	16
6	Sitagliptin and the Blood-Retina Barrier: Effects on Retinal Endothelial Cells Manifested Only after Prolonged Exposure. Journal of Diabetes Research, 2020, 2020, 1-16.	1.0	9
7	Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 83-94.	1.0	4
8	Inhibition of Single Routes of Intracellular Signaling is Not Sufficient to Neutralize the Biphasic Disturbance of a Retinal Endothelial Cell Barrier Induced by VEGF-A165. Cellular Physiology and Biochemistry, 2017, 42, 1493-1513.	1.1	12
9	Neonatal Fc receptor FcRn is involved in intracellular transport of the Fc fusion protein aflibercept and its transition through retinal endothelial cells. Experimental Eye Research, 2017, 154, 39-46.	1.2	11
10	The Protein Kinase C Inhibitor: Ruboxistaurin. Developments in Ophthalmology, 2016, 55, 295-301.	0.1	20
11	Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: Evidence for an involvement of the neonatal Fc receptor. Experimental Eye Research, 2016, 143, 49-59.	1.2	18
12	Safety of monoclonal antibodies and related therapeutic proteins for the treatment of neovascular macular degeneration: addressing outstanding issues. Expert Opinion on Drug Safety, 2016, 15, 75-87.	1.0	8
13	Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders. PLoS ONE, 2016, 11, e0145375.	1.1	20
14	Binding of VEGF-A is sufficient to abrogate the disturbing effects of VEGF-B together with VEGF-A on retinal endothelial cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 885-894.	1.0	3
15	Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Experimental Eye Research, 2014, 122, 20-31.	1.2	40
16	Ranibizumab efficiently blocks migration but not proliferation induced by growth factor combinations including VEGF in retinal endothelial cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 2345-2353.	1.0	17
17	VEGF but not PIGF disturbs the barrier of retinal endothelial cells. Experimental Eye Research, 2013, 115, 162-171.	1.2	53
18	Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences. British Journal of Ophthalmology, 2012, 96, 1023-1028.	2.1	34

#	Article	IF	CITATIONS
19	Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells. British Journal of Ophthalmology, 2011, 95, 1151-1156.	2.1	28
20	Inhibition of Protein Kinase C Is Not Sufficient to Prevent or Reverse Effects of VEGF ₁₆₅ on Claudin-1 and Permeability in Microvascular Retinal Endothelial Cells. , 2010, 51, 535.		18
21	Tetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells. International Journal of Molecular Medicine, 2007, , .	1.8	9
22	Tetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells. International Journal of Molecular Medicine, 2007, 20, 643-52.	1.8	23
23	Generation and characterization of iBREC: Novel hTERT-immortalized bovine retinal endothelial cells. International Journal of Molecular Medicine, 2005, 16, 65.	1.8	11
24	Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal endothelial cells. International Journal of Molecular Medicine, 2005, 16, 65-70.	1.8	10