
Mengxi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222305/publications.pdf Version: 2024-02-01

MENCYLWI

#	Article	IF	CITATIONS
1	Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the United States of America, 2017, 114, 10584-10589.	7.1	633
2	Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 2019, 5, 32.	7.0	268
3	Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab on A Chip, 2016, 16, 2636-2643.	6.0	147
4	Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.	10.3	146
5	Enriching Nanoparticles <i>via</i> Acoustofluidics. ACS Nano, 2017, 11, 603-612.	14.6	142
6	Circulating Tumor Cell Phenotyping via Highâ€Throughput Acoustic Separation. Small, 2018, 14, e1801131.	10.0	115
7	High-throughput acoustic separation of platelets from whole blood. Lab on A Chip, 2016, 16, 3466-3472.	6.0	106
8	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	14.9	106
9	Acoustofluidic Salivary Exosome Isolation. Journal of Molecular Diagnostics, 2020, 22, 50-59.	2.8	104
10	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	10.0	83
11	Separating extracellular vesicles and lipoproteins <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 1174-1182.	6.0	81
12	A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.	6.0	76
13	Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.	27.5	66
14	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	6.0	60
15	An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab on A Chip, 2011, 11, 163-172.	6.0	56
16	High-throughput cell focusing and separation <i>via</i> acoustofluidic tweezers. Lab on A Chip, 2018, 18, 3003-3010.	6.0	55
17	Acoustofluidic Synthesis of Particulate Nanomaterials. Advanced Science, 2019, 6, 1900913.	11.2	49
18	A Laminar Flow Electroporation System for Efficient DNA and siRNA Delivery. Analytical Chemistry, 2011, 83, 5881-5887.	6.5	48

Mengxi Wu

#	Article	IF	CITATIONS
19	Electroporation on microchips: the harmful effects of pH changes and scaling down. Scientific Reports, 2016, 5, 17817.	3.3	42
20	A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in vitro and ex vivo. Scientific Reports, 2016, 6, 18469.	3.3	37
21	Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab on A Chip, 2019, 19, 394-402.	6.0	34
22	Acoustic Cell Separation Based on Density and Mechanical Properties. Journal of Biomechanical Engineering, 2020, 142, .	1.3	31
23	Acoustofluidic coating of particles and cells. Lab on A Chip, 2016, 16, 4366-4372.	6.0	27
24	Clinical utility of non-EpCAM based circulating tumor cell assays. Advanced Drug Delivery Reviews, 2018, 125, 132-142.	13.7	26
25	Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsystems and Nanoengineering, 2021, 7, 20.	7.0	22
26	High-density distributed electrode network, a multi-functional electroporation method for delivery of molecules of different sizes. Scientific Reports, 2013, 3, 3370.	3.3	14
27	Separation: Acoustic Separation of Nanoparticles in Continuous Flow (Adv. Funct. Mater. 14/2017). Advanced Functional Materials, 2017, 27, .	14.9	10
28	Method for Electric Parametric Characterization and Optimization of Electroporation on a Chip. Analytical Chemistry, 2013, 85, 4483-4491.	6.5	9
29	Parametric optimization of electric field strength for cancer electrochemotherapy on a chip-based model. Theranostics, 2018, 8, 358-368.	10.0	9
30	Ultrasensitive Multiparameter Phenotyping of Rare Cells Using an Integrated Digitalâ€Molecularâ€Counting Microfluidic Well Plate. Small, 2021, 17, e2101743.	10.0	4
31	A microchip for in vitro parameter determination of cancer electrochemotherapy. , 2013, , .		3
32	Mixing high-viscosity fluids via acoustically driven bubbles. Journal of Micromechanics and Microengineering, 2017, 27, .	2.6	3
33	A flow-through electroporation device utilizing Dean Vortex to enhance cell viability. , 2015, , .		2
34	Fluorescence-Activated Cell Sorters: Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter (Small 40/2018). Small, 2018, 14, 1870185.	10.0	2
35	A portable and high efficiency system for cell electroporation under low voltage. , 2011, , .		1
36	A symmetrical hyperbolic formatted microchip for rapid optimization of electroporation. , 2013, , .		1

#	Article	IF	CITATIONS
37	Microfluidic freeâ€flow paper electrochromatography for continuous separation of glycans. ChemElectroChem, 0, , .	3.4	Ο