
José Júlio Costa Sidrim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7222120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research advances on the multiple uses of Moringa oleifera : A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, 2017, 10, 621-630.	0.4	115
2	Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling, 2019, 35, 320-328.	0.8	73
3	Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydrate Polymers, 2018, 195, 662-669.	5.1	54
4	Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiology (United) Tj ETQq0	00rg B.7 /Ov	erlock 10 Tf :
5	Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Medical Mycology, 2015, 53, 145-152.	0.3	51
6	Molecular methods for the diagnosis and characterization ofCryptococcus: a review. Canadian Journal of Microbiology, 2010, 56, 445-458.	0.8	46
7	Candida species isolated from the gastrointestinal tract of cockatiels (Nymphicus hollandicus): In vitro antifungal susceptibility profile and phospholipase activity. Veterinary Microbiology, 2010, 145, 324-328.	0.8	44
8	Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Research, 2015, 15, fov012.	1.1	41
9	Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 2016, 47, 917-924.	0.8	40
10	Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health. Journal of Medical Microbiology, 2013, 62, 889-895.	0.7	36
11	Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. Journal of Medical Microbiology, 2017, 66, 1045-1052.	0.7	34
12	In vitro inhibitory effect of miltefosine against strains of Histoplasma capsulatum var. capsulatum and Sporothrix spp Medical Mycology, 2014, 52, 320-325.	0.3	33
13	<i>In vitro</i> susceptibility of antifungal drugs against <i>Sporothrix brasiliensis</i> recovered from cats with sporotrichosis in Brazil: Table 1 Medical Mycology, 2016, 54, 275-279.	0.3	32
14	Antifungal susceptibility of Sporothrix schenckii complex biofilms. Medical Mycology, 2018, 56, 297-306.	0.3	32
15	The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. Journal of Medical Microbiology, 2014, 63, 936-944.	0.7	31
16	Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. Journal of Medical Microbiology, 2015, 64, 394-399.	0.7	30
17	Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. International Journal of Biological Macromolecules, 2021, 166, 621-632.	3.6	30
18	Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. Journal of Medical Microbiology, 2015, 64, 1277-1286.	0.7	30

#	Article	IF	CITATIONS
19	Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives. Molecules, 2011, 16, 6422-6431.	1.7	29
20	Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. Veterinary Microbiology, 2018, 220, 47-52.	0.8	29
21	Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Veterinary Microbiology, 2012, 159, 375-380.	0.8	28
22	Crossâ€resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses, 2016, 59, 281-290.	1.8	28
23	Azole resistance in <i>Candida albicans</i> from animals: Highlights on efflux pump activity and gene overexpression. Mycoses, 2017, 60, 462-468.	1.8	28
24	Effect of Farnesol on Growth, Ergosterol Biosynthesis, and Cell Permeability in Coccidioides posadasii. Antimicrobial Agents and Chemotherapy, 2013, 57, 2167-2170.	1.4	25
25	Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Veterinary Microbiology, 2016, 192, 213-219.	0.8	25
26	Tumor necrosis factor prevents Candida albicans biofilm formation. Scientific Reports, 2017, 7, 1206.	1.6	23
27	Antifungal activity of different molecular weight chitosans against planktonic cells and biofilm of Sporothrix brasiliensis. International Journal of Biological Macromolecules, 2020, 143, 341-348.	3.6	23
28	Promethazine improves antibiotic efficacy and disrupts biofilms of <i>Burkholderia pseudomallei</i> . Biofouling, 2017, 33, 88-97.	0.8	19
29	Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Medical Mycology, 2019, 57, 764-772.	0.3	19
30	Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. Journal of Medical Microbiology, 2018, 67, 903-914.	0.7	19
31	Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles. Mycopathologia, 2015, 180, 421-426.	1.3	18
32	Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts. Asian Pacific Journal of Tropical Medicine, 2015, 8, 919-922.	0.4	18
33	The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in <i>Trichosporon</i> spp Biofouling, 2017, 33, 640-650.	0.8	18
34	In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Mycoses, 2018, 61, 449-454.	1.8	18
35	Exposure of Candida parapsilosis complex to agricultural azoles: An overview of the role of environmental determinants for the development of resistance. Science of the Total Environment, 2019, 650, 1231-1238.	3.9	18
36	<i>In vitro</i> and <i>ex vivo</i> biofilms of dermatophytes: a new panorama for the study of antifungal drugs. Biofouling, 2020, 36, 783-791.	0.8	18

José Júlio Costa Sidrim

#	Article	IF	CITATIONS
37	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	1.8	18
38	<i>Ex vivo</i> biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model. Biofouling, 2019, 35, 392-400.	0.8	17
39	Antifungal susceptibility and virulence attributes of animal-derived isolates of Candida parapsilosis complex. Journal of Medical Microbiology, 2014, 63, 1568-1572.	0.7	16
40	In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Medical Mycology, 2015, 53, 93-98.	0.3	16
41	Inhibitory effect of a lipopeptide biosurfactant produced by <i>Bacillus subtilis</i> on planktonic and sessile cells of <i>Trichosporon</i> spp Biofouling, 2018, 34, 309-319.	0.8	16
42	Pentamidine inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2018, 13, 1129-1140.	1.0	16
43	Trends in antifungal susceptibility and virulence of <i>Candida</i> spp. from the nasolacrimal duct of horses. Medical Mycology, 2016, 54, 147-154.	0.3	15
44	Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp Microbial Pathogenesis, 2019, 130, 219-225.	1.3	15
45	The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of <i>Candida tropicalis</i> . Canadian Journal of Microbiology, 2020, 66, 377-388.	0.8	15
46	Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Veterinary Microbiology, 2017, 212, 22-30.	0.8	14
47	Biofilms of <i>Candida</i> spp. from the ocular conjunctiva of horses with reduced azole susceptibility: a complicating factor for the treatment of keratomycosis?. Veterinary Ophthalmology, 2017, 20, 539-546.	0.6	13
48	Mini-review: from <i>inÂvitro</i> to <i>ex vivo</i> studies: an overview of alternative methods for the study of medical biofilms. Biofouling, 2020, 36, 1-21.	0.8	13
49	β-lactam antibiotics & vancomycin increase the growth & virulence of <i>Candida</i> spp Future Microbiology, 2018, 13, 869-875.	1.0	12
50	Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Future Microbiology, 2019, 14, 1023-1034.	1.0	12
51	<i>Trichophyton tonsurans</i> strains from Brazil: phenotypic heterogeneity, genetic homology, and detection of virulence genes. Canadian Journal of Microbiology, 2013, 59, 754-760.	0.8	11
52	Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Medical Mycology, 2020, 58, 896-905.	0.3	11
53	Biofilm formation on cat claws by Sporothrix species: An ex vivo model. Microbial Pathogenesis, 2021, 150, 104670.	1.3	11
54	Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiology, 2020, 15, 1109-1121.	1.0	11

#	Article	IF	CITATIONS
55	Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Medical Mycology, 2020, 58, 906-912.	0.3	10
56	In vitro antimicrobial susceptibility of clinical and environmental strains of Burkholderia pseudomallei from Brazil. International Journal of Antimicrobial Agents, 2013, 42, 375-377.	1.1	9
57	Virulence and antimicrobial susceptibility of clinical and environmental strains of <i>Aeromonas</i> spp. from northeastern Brazil. Canadian Journal of Microbiology, 2015, 61, 597-601.	0.8	9
58	RYP1 gene as a target for molecular diagnosis of histoplasmosis. Journal of Microbiological Methods, 2016, 130, 112-114.	0.7	9
59	Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Brazilian Journal of Infectious Diseases, 2016, 20, 155-159.	0.3	9
60	Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek, 2017, 110, 33-43.	0.7	9
61	Terpinen-4-ol inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2019, 14, 1221-1233.	1.0	9
62	Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Medical Mycology, 2017, 55, 725-732.	0.3	9
63	Synthesis and inÂvitro antifungal activity of isoniazid-derived hydrazones against Coccidioides posadasii. Microbial Pathogenesis, 2016, 98, 1-5.	1.3	8
64	Efflux pump inhibition controls growth and enhances antifungal susceptibility of <i>Fusarium solani</i> species complex. Future Microbiology, 2020, 15, 9-20.	1.0	8
65	Antifungal effect of anthraquinones against <i>Cryptococcus neoformans</i> : detection of synergism with amphotericin B. Medical Mycology, 2021, 59, 564-570.	0.3	8
66	Bipolaris hawaiiensis as an emerging cause of cutaneous phaeohyphomycosis in an Antillean manatee Trichechus manatus manatus. Diseases of Aquatic Organisms, 2015, 113, 69-73.	0.5	8
67	In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Medical Mycology, 2018, 56, 1012-1022.	0.3	7
68	Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Frontiers in Microbiology, 2019, 10, 1337.	1.5	7
69	Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the <i>Sporothrix schenckii</i> complex. Biofouling, 2020, 36, 909-921.	0.8	7
70	Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microbial Pathogenesis, 2020, 143, 104123.	1.3	7
71	Trichosporon asahii and Trichosporon inkin Biofilms Produce Antifungal-Tolerant Persister Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645812.	1.8	7
72	Clinical and environmental isolates of Burkholderia pseudomallei from Brazil: Genotyping and detection of virulence gene. Asian Pacific Journal of Tropical Medicine, 2017, 10, 945-951	0.4	6

#	Article	IF	CITATIONS
73	A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. International Journal of Antimicrobial Agents, 2018, 52, 272-277.	1.1	6
74	Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of <i>Candida tropicalis</i> . Biofouling, 2020, 36, 528-536.	0.8	6
75	Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe, 2021, 69, 102322.	1.0	6
76	Proton pump inhibitors versus <i>Cryptococcus</i> species: effects on <i>in vitro</i> susceptibility and melanin production. Future Microbiology, 2019, 14, 489-497.	1.0	5
77	One Health Implications of Antimicrobial Resistance in Bacteria from Amazon River Dolphins. EcoHealth, 2021, 18, 383-396.	0.9	5
78	Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms. Canadian Journal of Microbiology, 2015, 61, 827-836.	0.8	4
79	Proposal for a microcosm biofilm model for the study of vulvovaginal candidiasis. Biofouling, 2020, 36, 610-620.	0.8	4
80	Azole-Resilient Biofilms and Non-wild Type C. albicans Among Candida Species Isolated from Agricultural Soils Cultivated with Azole Fungicides: an Environmental Issue?. Microbial Ecology, 2021, 82, 1080-1083.	1.4	4
81	Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. Journal of Medical Microbiology, 2020, 69, 830-837.	0.7	4
82	Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing theÂantifungal effects of terbinafine and griseofulvin. Biofouling, 2022, 38, 286-297.	0.8	4
83	In vitro inhibitory effect of statins on planktonic cells and biofilms of the Sporothrix schenckii species complex. Journal of Medical Microbiology, 2020, 69, 838-843.	0.7	3
84	Enterobacteria and Vibrio from Macrobrachium amazonicum prawn farming in Fortaleza, CearÃi, Brazil. Asian Pacific Journal of Tropical Medicine, 2016, 9, 27-31.	0.4	2
85	Atypical chlamydoconidium-producing Trichophyton tonsurans strains from CearÃ _i State, Northeast Brazil: investigation of taxonomy by phylogenetic analysis and biofilm susceptibility. Microbiology (United Kingdom), 2021, 167, .	0.7	2
86	Antifungal activity of deferiprone and EDTA against <i>Sporothrix</i> spp.: Effect on planktonic growth and biofilm formation. Medical Mycology, 2021, 59, 537-544.	0.3	1
87	Yeast microbiota of free-ranging amphibians and reptiles from Caatinga biome in CearÃ _i State, Northeast Brazil: High pathogenic potential of Candida famata. Ciencia Rural, 2021, 51, .	0.3	1
88	Vancomycin enhances growth and virulence of Trichosporon spp. planktonic cells and biofilms. Medical Mycology, 2021, 59, 793-801.	0.3	1
89	Anthraquinones from <i>Aloe</i> spp. inhibit <i>Cryptococcus neoformans sensu stricto</i> : effects against growing and mature biofilms. Biofouling, 2021, 37, 809-817.	0.8	1
90	<i>Enterococcus faecalis</i> and <i>Candida albicans</i> dual-species biofilm: establishment of an <i>i>in vitro</i> protocol and characterization. Biofouling, 0, , 1-13.	0.8	1