Rafael Clemente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7221665/publications.pdf

Version: 2024-02-01

126708 110170 5,000 65 33 64 citations h-index g-index papers 69 69 69 4482 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 2011, 191, 41-48.	6.5	462
2	Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 2004, 57, 215-224.	4.2	403
3	Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 2014, 186, 195-202.	3.7	369
4	Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 2009, 67, 243-259.	2.0	340
5	The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 2003, 122, 303-312.	3.7	297
6	Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environmental Pollution, 2005, 138, 46-58.	3.7	225
7	Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 2006, 64, 1264-1273.	4.2	182
8	Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology, 2006, 97, 1894-1901.	4.8	155
9	Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 2010, 158, 155-160.	3.7	147
10	Mobility of metals and metalloids in a multi-element contaminated soil 20years after cessation of the pollution source activity. Environmental Pollution, 2008, 155, 254-261.	3.7	138
11	A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environmental Pollution, 2006, 143, 397-406.	3.7	125
12	The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Journal of Hazardous Materials, 2012, 223-224, 63-71.	6.5	124
13	Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation, 2003, 14, 199-205.	1.5	117
14	Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environmental and Experimental Botany, 2006, 56, 19-27.	2.0	110
15	Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials, 2014, 268, 68-76.	6.5	101
16	Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere, 2011, 84, 642-650.	4.2	98
17	A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agriculture, Ecosystems and Environment, 2007, 118, 319-326.	2.5	96
18	Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environmental Pollution, 2016, 216, 71-79.	3.7	93

#	Article	IF	CITATIONS
19	Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environmental Pollution, 2010, 158, 1644-1651.	3.7	91
20	Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. Journal of Hazardous Materials, 2011, 186, 1283-1289.	6.5	82
21	Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biology and Fertility of Soils, 2013, 49, 313-322.	2.3	80
22	Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environmental Pollution, 2013, 173, 238-244.	3.7	77
23	Food byproducts as amendments in trace elements contaminated soils. Food Research International, 2015, 73, 176-189.	2.9	73
24	Mercurated and Palladated Iminophosphoranes. Synthesis and Reactivity. Organometallics, 2003, 22, 4248-4259.	1.1	71
25	Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environmental Pollution, 2011, 159, 3078-3085.	3.7	69
26	Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere, 2014, 107, 121-128.	4.2	63
27	Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens,) Tj ETQq1	1 9.7843	14 rgBT /Ove
28	Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere, 2020, 260, 127661.	4.2	44
29	Metal Availability and Chemical Properties in the Rhizosphere of Lupinus albus L. Growing in a High-Metal Calcareous Soil. Water, Air, and Soil Pollution, 2009, 201, 283-293.	1.1	43
30	The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil. Environmental Science and Pollution Research, 2014, 21, 1029-1038.	2.7	43
31	Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation. Chemosphere, 2014, 107, 101-108.	4.2	41
32	Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. Chemosphere, 2017, 178, 556-564.	4.2	40
33	Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere, 2019, 223, 223-231.	4.2	36
34	Changes in Microbial Biomass Parameters of a Heavy Metal-Contaminated Calcareous Soil during a Field Remediation Experiment. Journal of Environmental Quality, 2007, 36, 1137-1144.	1.0	29
35	Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. Ecotoxicology and Environmental Safety, 2008, 70, 207-215.	2.9	29
36	Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. Journal of Geochemical Exploration, 2014, 147, 98-106.	1.5	29

#	Article	IF	Citations
37	Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with Noccaea caerulescens. Ecological Engineering, 2016, 89, 56-63.	1.6	28
38	Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm – Agronomical and environmental implications. Journal of Environmental Management, 2017, 192, 57-67.	3.8	28
39	Energy production potential of phytoremediation plant biomass: Helianthus annuus and Silybum marianum. Industrial Crops and Products, 2019, 135, 206-216.	2.5	28
40	Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment. Ecological Engineering, 2014, 73, 588-597.	1.6	26
41	Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. Journal of Environmental Management, 2018, 209, 262-272.	3.8	26
42	Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere, 2010, 81, 603-610.	4.2	25
43	Implications of the Use of As-Rich Groundwater for Agricultural Purposes and the Effects of Soil Amendments on As Solubility. Environmental Science & Echnology, 2010, 44, 9463-9469.	4.6	25
44	Assessment of native shrubs for stabilisation of a trace elements-polluted soil as the final phase of a restoration process. Agriculture, Ecosystems and Environment, 2014, 196, 103-111.	2.5	24
45	Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis. Environmental Pollution, 2016, 219, 296-304.	3.7	24
46	Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environmental Pollution, 2009, 157, 2663-2669.	3.7	21
47	Strategies for the use of plant biomass obtained in the phytostabilisation of trace-element-contaminated soils. Biomass and Bioenergy, 2019, 126, 220-230.	2.9	18
48	Response of Piptatherum miliaceum to co-culture with a legume species for the phytostabilisation of trace elements contaminated soils. Journal of Soils and Sediments, 2017, 17, 1349-1357.	1.5	17
49	Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass. Waste and Biomass Valorization, 2020, 11, 6125-6137.	1.8	14
50	Major As species, lipid peroxidation and protein carbonylation in rice plants exposed to increasing As(V) concentrations. Heliyon, 2020, 6, e04703.	1.4	12
51	Selection of Mediterranean plants biomass for the composting of pig slurry solids based on the heat production during aerobic degradation. Waste Management, 2020, 104, 1-8.	3.7	12
52	Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation. Environmental Toxicology and Chemistry, 2016, 35, 2874-2884.	2.2	10
53	The use of olive mill waste to promote phytoremediation. , 2017, , 183-204.		10
54	Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization. Nanomaterials, 2020, 10, 1537.	1.9	9

#	Article	IF	CITATIONS
55	Chemical and Bioenergetic Characterization of Biofuels from Plant Biomass: Perspectives for Southern Europe. Applied Sciences (Switzerland), 2020, 10, 3571.	1.3	9
56	Antimony. Environmental Pollution, 2013, , 497-506.	0.4	8
57	Potential of the Biomass of Plants Grown in Trace Element-Contaminated Soils under Mediterranean Climatic Conditions for Bioenergy Production. Agronomy, 2021, 11, 1750.	1.3	8
58	Efficiency of a phytoimmobilisation strategy for heavy metal contaminated soils using white lupin. Journal of Geochemical Exploration, 2012, 123, 95-100.	1.5	7
59	Extractability, Distribution Among Different Particle Size Fractions, and Phytotoxicity of Cu and Zn in Composts Made With the Separated Solid Fraction of Pig Slurry. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	6
60	Differential response of Oryza sativa L. and Phragmites australis L. plants in trace elements contaminated soils under flooded and unflooded conditions. Environmental Geochemistry and Health, 2022, 44, 99-115.	1.8	6
61	Response of Phragmites australis to increasing As(V) concentrations: Accumulation and speciation of As, and plant oxidative stress. Chemosphere, 2022, 302, 134937.	4.2	4
62	Indicators for Monitoring Mine Site Rehabilitation. , 2018, , 49-66.		3
63	Interactions between the Hyperaccumulator Noccaea caerulescens and Brassica juncea or Lupinus albus for Phytoextraction. Agronomy, 2020, 10, 1367.	1.3	2
64	An <i>arsRB</i> resistance operon confers tolerance to arsenite in the environmental isolate <i>Terribacillus</i> sp. AE2B 122. FEMS Microbiology Ecology, 2021, 97, .	1.3	2
65	Tungsten. Environmental Pollution, 2013, , 559-564.	0.4	1