
Antal Berenyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7221509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nature Neuroscience, 2012, 15, 793-802.	14.8	1,153
2	Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 2018, 9, 483.	12.8	532
3	Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation. Science, 2012, 337, 735-737.	12.6	380
4	Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks. Neuron, 2014, 84, 470-485.	8.1	374
5	Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 2018, 9, 5092.	12.8	338
6	Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13535-13540.	7.1	297
7	Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics. Neuron, 2015, 86, 92-105.	8.1	284
8	Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. Journal of Neurophysiology, 2014, 111, 1132-1149.	1.8	276
9	Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron, 2017, 93, 1213-1226.e5.	8.1	233
10	Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus. Neuron, 2012, 75, 410-417.	8.1	220
11	Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples. Neuron, 2016, 91, 1342-1355.	8.1	172
12	Local Generation and Propagation of Ripples along the Septotemporal Axis of the Hippocampus. Journal of Neuroscience, 2013, 33, 17029-17041.	3.6	155
13	Spatially Distributed Local Fields in the Hippocampus Encode Rat Position. Science, 2014, 344, 626-630.	12.6	124
14	Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus, 2016, 26, 1593-1607.	1.9	101
15	Large-scale Recording of Neurons by Movable Silicon Probes in Behaving Rodents. Journal of Visualized Experiments, 2012, , e3568.	0.3	78
16	Closed-loop stimulation of the medial septum terminates epileptic seizures. Brain, 2021, 144, 885-908.	7.6	46
17	Oscillotherapeutics – Time-targeted interventions in epilepsy and beyond. Neuroscience Research, 2020, 152, 87-107.	1.9	45
18	Sustained efficacy of closed loop electrical stimulation for long-term treatment of absence epilepsy in rats. Scientific Reports, 2017, 7, 6300.	3.3	43

ANTAL BERENYI

#	Article	IF	CITATIONS
19	Proximodistal Organization of the CA2 Hippocampal Area. Cell Reports, 2019, 26, 1734-1746.e6.	6.4	35
20	The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Frontiers in Neural Circuits, 2021, 15, 701080.	2.8	32
21	Processing of spatial visual information along the pathway between the suprageniculate nucleus and the anterior ectosylvian cortex. Brain Research Bulletin, 2005, 67, 281-289.	3.0	24
22	Visual Pathways Serving Motion Detection in the Mammalian Brain. Sensors, 2010, 10, 3218-3242.	3.8	24
23	Neocortical gamma oscillations in idiopathic generalized epilepsy. Epilepsia, 2016, 57, 796-804.	5.1	23
24	Spectral receptive field properties of neurons in the feline superior colliculus. Experimental Brain Research, 2007, 181, 87-98.	1.5	17
25	Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus. European Journal of Neuroscience, 2008, 27, 1801-1808.	2.6	17
26	Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. ENeuro, 2020, 7, ENEURO.0253-19.2019.	1.9	16
27	Spatial and temporal visual properties of the neurons in the intermediate layers of the superior colliculus. Neuroscience Letters, 2009, 454, 76-80.	2.1	14
28	Double sliding-window technique: A new method to calculate the neuronal response onset latency. Brain Research, 2007, 1178, 141-148.	2.2	9
29	Neuronal code of spatial visual information in the caudate nucleus. Neuroscience, 2011, 182, 225-231.	2.3	9
30	Direct synaptic connections between superior colliculus afferents and thalamo-insular projection neurons in the feline suprageniculate nucleus: A double-labeling study with WGA-HRP and kainic acid. Neuroscience Research, 2010, 66, 7-13.	1.9	8
31	Direct projection from the visual associative cortex to the caudate nucleus in the feline brain. Neuroscience Letters, 2011, 503, 52-57.	2.1	8
32	Chronic Transcranial Electrical Stimulation and Intracortical Recording in Rats. Journal of Visualized Experiments, 2018, , .	0.3	7
33	Reduced MC4R signaling alters nociceptive thresholds associated with red hair. Science Advances, 2021, 7, .	10.3	7
34	Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Frontiers in Neural Circuits, 2021, 15, 784085.	2.8	7
35	A Proposed Brain-, Spine-, and Mental- Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. Journal of Alzheimer's Disease, 2022, , 1-21.	2.6	6
36	Coding of self-motion-induced and self-independent visual motion in the rat dorsomedial striatum. PLoS Biology, 2018, 16, e2004712.	5.6	5

ANTAL BERENYI

#	Article	IF	CITATIONS
37	Visual stimulation synchronizes or desynchronizes the activity of neuron pairs between the caudate nucleus and the posterior thalamus. Brain Research, 2011, 1418, 52-63.	2.2	4
38	How moving visual stimuli modulate the activity of the substantia nigra pars reticulata. Neuroscience, 2009, 163, 1316-1326.	2.3	3
39	Spectral receptive field properties of visually active neurons in the caudate nucleus. Neuroscience Letters, 2010, 480, 148-153.	2.1	3
40	Spatio-temporal visual properties in the ascending tectofugal system. Open Life Sciences, 2010, 5, 21-30.	1.4	2
41	Co-oscillation and synchronization between the posterior thalamus and the caudate nucleus during visual stimulation. Neuroscience, 2013, 242, 21-27.	2.3	2
42	Correlation between visual stimulus eccentricity and multiscale neuronal activity in the lateral geniculate nucleus. , 2009, 2009, 6810-3.		0